Math 22
Final Exam Fall 2008
Name ______________________________
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Always show enough work to show how you arrived at your answer.  If work is not shown, you may not earn full credit for the problem.  Whenever you are asked to SET UP an integral, you do not need to evaluate it.  Round all decimal answers to four decimal places.  

1.
Let 
[image: image1.wmf]P

=

(1, –2, 3), v = 
[image: image2.wmf]1, 3, 2

, and let w = 
[image: image3.wmf]1,0,1

.  Find each of the following.
(4 pts.each)


a.
the distance from P to the xz-plane.


b.
the cosine of the angle between v and w.


d.
the vector projection of v onto w (
[image: image4.wmf]proj

w

v

).


e.
a vector that is orthogonal to both v and w.


f.
the parametric equations of the line through P with direction vector v.


g.
the equation of a plane containing the line in part f.
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2.
 Let 
[image: image5.wmf]22
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a.
Sketch the traces (if they exist) in the planes 
[image: image6.wmf]1 and 2
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.
(8 points)
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3.
Let 
[image: image7.wmf]C

 be the graph of 
[image: image8.wmf]()(),()
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, with the values shown in the table on the right. 
(14 pts.)

	t
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a.
Sketch the path of the particle.
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b.
Estimate 
[image: image11.wmf](2)
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.


c.
Draw the unit tangent vector and the unit normal vector at point on the graph where 
[image: image12.wmf]2
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.
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4.
The position of a particle in space after t seconds is given by 
[image: image13.wmf]()3sin(2)5cos(2)4sin(2)
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.  The temperature of the particle at the point 
[image: image14.wmf](,,)
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 is given by the function 
[image: image15.wmf]2
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.  The distance is in centimeters and the temperature is in degrees Celsius.  Give exact answers (no decimals).
(10 points each)


a.
Find the distance the particle has traveled between 
[image: image16.wmf]0

t

=

 and 
[image: image17.wmf]3

p

 seconds.


b.
Find the rate the temperature of the particle is changing in the direction the particle is moving at 
[image: image18.wmf]3

t

p

=

.

5.
Find the equation of plane tangent to the surface 
[image: image19.wmf]23

2

yxz

=-

 at the point (2, 2, 1)
(10 points)
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6.
Find the maximum and minimum values for the function 
[image: image20.wmf]22
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, subject to the constraint 
[image: image21.wmf]22
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(20 points)
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7.
Let S be the part of the surface 
[image: image22.wmf]2
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 above the rectangle [0, 1]
[image: image23.wmf]´

[0, 2].  


a.
Let E be the solid above the rectangle [0, 1]
[image: image24.wmf]´

[0, 2] and below S.  SET UP an integral that gives the volume of E. 


(6 points)


b.
SET UP an integral that gives the area of S. 

(10 points)

8.  
Complete the chart for coordinates.


(8 points)

	Rectangular 
[image: image25.wmf](,,)
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	Cylindrical 
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	Spherical 
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9.
Evaluate 
[image: image29.wmf](
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(12 points)

10.
Use spherical coordinates to SET UP an integral that could be used to find the volume of the conical cup with radius 5 cm and vertex angle 
[image: image30.wmf]3

p

.  
(8 points)
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11.
Let C be the path from ((1, 1) to (1, 1) along the graph of 
[image: image31.wmf]2
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and then from (1, 1) back to 


((1, 1) in a straight line.


(8 points each)


a.
Evaluate 
[image: image32.wmf]C

xds

ò

Ñ

.


b.
Show that the work done by 
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 along C is 0.


c.
Use Green’s Theorem to evaluate 
[image: image34.wmf]2
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ydxxdy
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.
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12.
Let S be the surface with parameterization 
[image: image35.wmf]2
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(8 points each)

a.
Find the unit vector that is normal to the surface S.


b.
Find 
[image: image39.wmf]curl

F

.


c.
Describe the C that appears when Stokes Theorem is used to evaluate 
[image: image40.wmf]curl
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 as a line integral. 

13.
Use the Divergence Theorem to calculate the surface integral 
[image: image41.wmf]S
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 for the vector field 
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 and S is the surface of the box bounded by the planes 
[image: image43.wmf]0,1,0,1,0,2

xxyyzz
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.
(8 points)
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If the partial derivatives of f are both continuous, then the directional derivative of f at the point 
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,

)

a

b

in the direction of the unit vector u is: 
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A point 
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is a stationary point of a function f if 
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Let D = 
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To find the extreme values of a function f subject to the constraint g use Lagrange multipliers: 
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Unit tangent vector: 
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Unit normal vector: 
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Binormal vector: 
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Area of a region D in the plane is 
[image: image59.wmf]1
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For a lamina with density function 
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Mass is 
[image: image61.wmf](,)

D

mxydA

=

òò

r

.


Moment about the x – axis is 
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Moment about the y – axis is 
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The coordinates of the center of mass are 
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and 
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Moment of inertia of the lamina about the x – axis is 
[image: image66.wmf]2
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Moment of inertia of the lamina about the y – axis is 
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Moment of inertia of the lamina about the origin is 
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For a bounded region E in three dimensional space with density function 
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Volume is 
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The moments about the three coordinate planes are:
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The center of mass is located at the point 
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xyz

, where 




[image: image76.wmf]yz

M

x

mass

=

, 
[image: image77.wmf]xz

M

y

mass

=

, and 
[image: image78.wmf]xy

M

z

mass

=


For a vector field  
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For a smooth surface S with parametric equation 
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Note: 
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The surface integral of F over the surface S is called the flux of F across S: 
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The Theorems:

All functions and derivatives mentioned exist and are continuous.  Curves are assumed to be either smooth or piecewise smooth.  Surfaces are orientable, and smooth along the edges except perhaps where smooth pieces join.

Fundamental Theorem of Calculus:  
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Fundamental Theorem of Line Integrals:  If C starts at a and ends at b, then 
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Green’s Theorem:


Let 
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Stokes’ Theorem:


Let 
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Divergence Theorem


Let 
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[image: image101.wmf]3

R

, bounded by a surface S.  Then 
[image: image102.wmf]div

ES

dVd

=

òòòòò

FFS

o




















	If D > 0 and �EMBED Equation.DSMT4���, then f has a local minimum at the point.


	If D > 0 and �EMBED Equation.DSMT4���, then f has a local maximum at the point.


	If D < 0, then f has a saddle at the point.
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If you’d like me to email your grade to you, please send me an email with Math 22 in the subject line and I’ll reply with your score on the final and exam and your grade in the class.


dhawkes@solano.edu
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