Math 22
Test 2
Sections 13.3 – 15.2
Name ______________________________

Always show enough work to show how you arrived at your answer.  If work is not shown, you may not earn full credit for the problem.  The point value of each problem is given on the right.

1.
Suppose that a dizzy bee is flying on the path of a circular helix.  Its position after t seconds is given by 
[image: image1.wmf]()cos(),sin(),
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.  The distance is in centimeters.

a.
Find the speed of the bee after 
[image: image2.wmf]3
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 seconds.


b.
Find the acceleration vector when 
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c.
Find the unit normal vector when 
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d.
Find the tangential and normal components of the acceleration vector when 
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2.
Find the directional derivative of 
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 at the point (1, 2) in the direction of 
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(8 points)

3.
Let 
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a.
Sketch the domain of f.
(4 points)


b.
Find 
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(2 points)

4.
Show that the limit, 
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(8 points)
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5.
a.
Find the tangent plane to the elliptic paraboloid 
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 at the point (1, 1, 3). 




(4 pts.)

b.
Find the linearization of 
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 at the point (1, 1, 3). 
(4 pts.)


c.
Use the linearization to estimate the value of 
[image: image13.wmf](0.8,1.1)
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(4 pts.)

6.
If 
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 when s = 0 and t = 2.
(6 points)
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7.
Find and classify the four critical points for 
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(14 points)

8.
Let S be the solid that lies below the surface 
[image: image19.wmf]2
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 and above the rectangle 
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a.
Estimate the volume of the solid.  Use a Riemann sum with 
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 and 
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 and choose the sample points to be the lower right corners.
(4 points)


b.
Use a double integral to find the volume of the solid.
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9.
a.
Find the maximum and minimum values for the function 
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(14 points)


b.
Let M be the maximum you found in part a.  Sketch the graphs of 
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 on the same graph.
(6 points)

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	


[20]

Unit tangent vector: 
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Unit normal vector: 
[image: image28.wmf]()

()

()

t

t

t

¢

=

¢

T

N

T


Binormal vector: 
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