Data	Instructor: Darryl Allen Assignment: Ch 9 Practice Exam A Course: Elementary Statistics 60157
Date: Time:	Book: Triola: Elementary Statistics, 11e
1.	Researchers conducted an experiment to test the effects of alcohol. The errors were recorded in a test of visual and motor skills for a treatment group of 22 people who drank ethanol and another group of 22 people given a placebo. The errors for the treatment group have a standard deviation of 1.79, and the error for the placebo group have a standard deviation of 1.45. Use a 0.05 significance level to test the claim that the treatment group has errors that vary more than the errors of the placebo group. (Assume that both samples are independent simple random samples from populations having normal distributions.)
	What is the conclusion for this hypothesis test?
	$\bigcirc A$ Fail to reject H ₀ . There is sufficient evidence to support the claim that the treatment group has errors that vary more than the errors of the placebo group.
	\bigcirc B. Reject H ₀ . There is insufficient evidence to support the claim that the treatment group has errors that vary more than the errors of the placebo group.
	OC. Reject H ₀ . There is sufficient evidence to support the claim that the treatment group has errors that vary more than the errors of the placebo group.
	\bigcirc D. Fail to reject H ₀ . There is insufficient evidence to support the claim that the treatment group has errors that vary more than the errors of the placebo group.
2.	In a 1993 survey of 560 college students, 172 said that they used illegal drugs during the previous year. In a recent survey of 720 college students, 248 said that they used illegal drugs during the previous year. Us a 0.05 significance level to test the claim that the proportion of college students using illegal drugs in 199, was less than it is now.
	Since the P-value is the significance level of $\alpha = 0.05$, there is vidence to support the claim that the proportion of college students using illegal drugs in 1993 was less than it is now
3.	Assume that the paired data came from a population that is normally distributed. Using a 0.05 significance level, find \overline{d} , s _d , the t test statistic, and the critical values to test the claim that $\mu_d = 0$. x _i 17 15 7 12 14 3 13 2 \square
	y _i 14.0 14.0 8.0 9.0 15.0 8.0 12.0 5.0
	$\overline{\mathbf{d}} = $ (Round to three decimal places as needed.)
	\vec{d} = (Round to three decimal places as needed.) s_d = (Round to three decimal places as needed.)
	$s_d = $ (Round to three decimal places as needed.)
	$s_d = $ (Round to three decimal places as needed.) t = (Round to three decimal places as needed.)
	$s_d = $ (Round to three decimal places as needed.) t = (Round to three decimal places as needed.)
	$s_d = $ (Round to three decimal places as needed.) t = (Round to three decimal places as needed.)

Student: _ Date: Time:			_		Cou	ructor: rse: Ele k: Triol:	mentary	y Statisti			As	signment	t: Ch 9	Prac	ice Exam A
4.		es is les d deviat	s that ions a	n the are ea	mean qual. A	amoun All mea	t of tar	in unf ents are	iltered e in mi	cigarett lligrams	es. I	Do not a	ssume	e the	tar in filtered population
	Filtere	ed 1		17 12	15	15	17	3	16 17	19	8	16	12	-	
	Unfilte	1 red 2.		20	11 22	11 24	14 24	16 26	17	8	16	13		-	
		sufficie	ent ev	iden	ce to s	upport	the cla	im that		ean amo	ount	of tar in	filter	ed ci	garettes is less
	OA. Y	es, bec	ause	the n	ull hy	pothesi	s is rej	ected.							
	OB. N	lo, beca	use tl	he nu	ill hyp	othesis	is not	rejecte	d.						
	OC. Y	es, bec	ause	the n	ull hy	pothesi	s is no	t reject	ed.						
	OD. N	lo, beca	use tl	he nu	ill hyp	othesis	is reje	cted.							
5.	Use a 0								he 🗌		n	x	Î a	s	0
	two soc deviatio								ly so		-	.786821	-		
	distribu		sume	mat	ne po	pulatio	us are i	normal	iy ⊢		_	.786834			
	Is there	sufficie	ent ev	iden	ce to r	eject th	e null	hypoth	esis?						•
	OA. Y	es, bec	ause	the te	est stat	tistic di	d not f	all in tl	he criti	cal regi	on.				
	OB. Y	es, bec	ause	the te	est stat	tistic fe	ll in th	e critic	al regi	on.					
	OC. N	lo, beca	use tl	he tes	st stati	stic did	l not fa	ll in th	e critic	al regio	n.				
	OD. N														
								Page 2							

Student: _ Date: Time:				Darryl Allen nentary Statistics : Elementary Stat		Assignment:	Ch	9 Practice Ex	am A	
6.	are shown between th deviations	as done testing a in the table. Con the two population are equal. Based is have different	nstruct a 95% n means. Do l on the resu	6 confidence in not assume the	terval for the population	e difference standard	n 	Treatment 27 19.77 3.58	Placebo 40 18.72 3.53	
	Find the 95	5% confidence in	nterval.							•
	$\square < \mu_1 -$	$\mu_2 < \square$ (Round	to three dea	cimal places as	needed.)					
	Does the co	onfidence interva	al show that	the treatment i	makes a diffe	erence?				
	OA. Yes,	, because the con	fidence inte	erval does not in	nclude zero.					
	OB. No,	because the conf	fidence inter	val does not in	clude zero.					
	OC. Yes,	, because the con	fidence inte	erval includes z	ero.					
	OD. No,	because the conf	fidence inter	rval includes ze	ro.					
7.	groups. Sul After the fi effect. Afte	ized, double-blin bjects in group 1 irst dose, 116 of er the first dose, 0 ct. Construct a 95 s, $p_1 - p_2$.	received th 725 subject 69 of 636 of	e new vaccine s in the experin f the subjects ir	while subject nental group the control	ts in group 2 (group 1) ex group (group	rec peri 2)	eived a con enced vom experience	trol vaccin iting as a s 1 vomiting	sid
		a 95% confidence $p_2 < \square$ (Round			s needed.)					
8.	subjects give	Il trial of a drug, ven placebos, 1.9 ridence of blurred	9% experier	nced blurred vis	sion. Use a 0	.01 significan				
	What is the	e conclusion of th	he hypothes	is test?						
		re is not sufficier ng those who use		to support the c	laim that the	e incidence of	f blı	irred vision	is greater	
		re is sufficient ev e who use the dr		upport the clair	n that the inc	idence of blu	irrea	l vision is l	ess among	5
	OC The	re is sufficient ev		apport the clair	n that the inc	idence of blu	irre	l vision is g	greater	
		ng those who use	e the drug.							

and 25 nonmenthol cigarettes. The tandard deviation of 0.26 mg. The l a standard deviation of 0.26 mg. Use a nonmenthol cigarettes have different nicotine content? Assume that the two nally distributed populations. Do not hol cigarettes and nonmenthol cigarettes
hol cigarettes and nonmenthol cigarettes
content
content
content.
8, 72% wear seatbelts. Among 2850 Ir seat belts. Use a 0.01 significance elt use. Does there appear to be a
nt difference in the proportions.
ignificant difference in the proportions.
t a significant difference in the
ficant difference in the proportions.

Student: Date: Time:	Instructor: Darryl Allen Assignment: Ch 9 Practice Exam A Course: Elementary Statistics 60157 Book: Triola: Elementary Statistics, 11e
11.	Listed below are amounts of strontium-90 (in millibecquerels or mBq per gram of calcium) in a simple random sample of baby teeth obtained from residents of state A and state B. Use a 0.05 significance level to test the claim that amounts of Strontium-90 from state A residents vary more than amounts from state B residents. (Assume that both samples are independent simple random samples from populations having normal distributions.)
	Click the icon to view the sample data.
	What is the conclusion for this hypothesis test?
	OA Reject H ₀ . There is sufficient evidence to support the claim that amounts of Strontium-90 from state A residents vary more than amounts from state B residents.
	\bigcirc B. Reject H ₀ . There is insufficient evidence to support the claim that amounts of Strontium-90 from state A residents vary more than amounts from state B residents.
	OC. Fail to reject H ₀ . There is sufficient evidence to support the claim that amounts of Strontium-90 from state A residents vary more than amounts from state B residents.
	OD. Fail to reject H ₀ . There is insufficient evidence to support the claim that amounts of Strontium-90 from state A residents vary more than amounts from state B residents.
	Sample data
	D
	State A: 139 141 148 154 151 139 152 149 155 150 138 143 State B: 135 140 142 130 135 129 127 140 130 140 138 143
12.	In a survey, 29% of 230 single women said that they "definitely want to have children." In the same survey, 27% of 260 single men gave the same response. Construct a 90% confidence interval estimate of the difference between the proportions of single women and single men who definitely want to have children. Is there a gender gap?
	Construct a 90% confidence interval estimate.
	$[] < p_1 - p_2 < []$ (Round to three decimal places as needed.)
	Is there a gender gap? Choose the correct answer below.
	OA Since the interval does not contain 0, there is evidence of a gender gap.
	\bigcirc B. Since the interval contains 0, there is no evidence of a gender gap.
	 B. Since the interval contains 0, there is no evidence of a gender gap. C. Since the interval contains 0, there is evidence of a gender gap.
	OC. Since the interval contains 0, there is evidence of a gender gap.

Date: Time:	Instructor: Darryl Allen Assignment: Ch 9 Practice Exam A Course: Elementary Statistics 60157 Book: Triola: Elementary Statistics, 11e
13.	A student surveyed her friends and found that among 20 males, 4 smoke, and among 30 female friends, 6 smoke. Give <i>two</i> reasons why these results should not be used for a hypothesis test of the claim that the proportions of male smokers and female smokers are equal.
	Choose the correct answer below.
	A 1. The sample is a convenience sample.2. There are less than 5 successes or 5 failures for the males.
	B. 1. The sample is a voluntary response sample.2. There are less than 5 successes or 5 failures for the females.
	C. 1. The sample is a voluntary response sample.2. There are less than 5 successes or 5 failures for the males.
	D. 1. The sample is a convenience sample.2. There are less than 5 successes or 5 failures for the females.
14.	The effectiveness of treating respiratory infections with herbal remedies was studied. "Days of fever" was used to measure effects. Among 449 children treated with herbal remedies, the mean number of days with fever was 0.35, with a standard deviation of 1.39 days. Among 448 children given a placebo, the mean was 0.93, with a standard deviation of 1.25 days. Use a 0.05 significance level to test the claim that herbal remedies affect the number of days with fever. Do not assume the population standard deviations are equal Based on these results, do herbal remedies appear to be effective?
	Choose the correct answer below.
	○A. Yes, because the null hypothesis is not rejected.
	OB. No, because the null hypothesis is rejected.
	OC. No, because the null hypothesis is not rejected.
	OD. Yes, because the null hypothesis is rejected.
15.	A simple random sample of the cents portions from 100 checks and from 100 credit card charges were collected. The cents portions of the checks have a mean of 21.6 cents and a standard deviation of 34.0 cents. The cents portion of the credit charges have a mean of 25.8 cents and a standard deviation of 32.5 cents. Use a 0.10 significance level to test the claim that the cents portions of the check amounts have a mean that is less than the mean of the cents portions of the credit card charges. Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal.
	P P

:		Instructor: Darryl Allen Course: Elementary Statistics 60157 Book: Triola: Elementary Statistics, 11e	Assignment: Ch 9 Practice Exam A
	sample and the different interval estimate of the	nces have a distribution that is approxim e mean of the differences between weigh	he paired sample data is a simple random nately normal. Construct a 95% confidence nts of discarded paper (in pounds) and gh more, discarded paper or discarded plastic
	Click the icon to v	view the data.	
	Let μ_1 be the mean of and $\mu_d = \mu_1 - \mu_2$.	the weights of discarded paper, $\boldsymbol{\mu}_2$ be th	e mean of the weights of discarded plastic,
	The 95% confidence in (Round to three decimation)	nterval is	
	Which seems to weigh	n more, discarded paper or discarded plas	stic?
		r appears to weigh more because the con nates of the mean differences are positiv	fidence interval does not contain the value 0 ve.
		ic appears to weigh more because the continuates of the mean differences are negative.	nfidence interval does not contain the value tive.
	OC. They appear to v	weigh about the same because the confid	dence interval contains the value 0 lbs.
	OD. Discarded paper	r appears to weigh more because the con	ifidence interval contains the value 0 lbs.
	More Info		

Page 7

Household Paper Plastic \odot (cont.) 1 20.12 4.37 2 8.82 2.83 3 3.27 0.15 4 13.61 2.13 6 7.57 1.41 7 9.41 0.80 8 16.08 3.42 9 6.33 0.92 10 14.33 1.53 11 15.09 2.17 12 17.65 2.68 13 6.05 0.65 14 7.72 0.92 15 11.08 2.97 16 6.16 1.40 17 6.98 0.63 18 6.38 2.10 19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 13.2 2.66 25 9.45 0.72 26 2.80				Course:	Assignment: Ch 9 Practice Exam A Elementary Statistics 60157 'riola: Elementary Statistics, 11e
2 8.82 2.83 3 3.27 0.15 4 13.61 2.13 5 13.05 2.93 6 7.57 1.41 7 9.41 0.80 8 16.08 3.42 9 6.33 0.92 10 14.33 1.53 11 15.09 2.17 12 17.65 2.68 13 6.05 0.65 14 7.72 0.92 15 11.08 2.97 16 6.16 1.40 17 6.98 0.63 18 6.38 2.10 19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28	16.	Household	Paper	Plastic	P 1
17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, whe confidence level should be used for the confidence interval? 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, whe confidence level should be used for the confidence interval? 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, whe confidence level should be used for the confidence interval? 17. Open S 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, whe confidence level should be used for the confidence interval? One set the correct answer below. OA 95% or 0.95 OB 99% or 0.90 OC 90% or 0.90	(cont.)	5,527	20.12	4.37	
4 13.61 2.13 5 13.05 2.93 6 7.57 1.41 7 9.41 0.80 8 16.08 3.42 9 6.33 0.92 10 14.33 1.53 11 15.09 2.17 12 17.65 2.68 13 6.05 0.65 14 7.72 0.92 15 11.08 2.97 16 6.16 1.40 17 6.98 0.63 18 6.38 2.10 19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30			8.82	2.83	
5 13.05 2.93 6 7.57 1.41 7 9.41 0.80 8 16.08 3.42 9 6.33 0.92 10 14.33 1.53 11 15.09 2.17 12 17.65 2.68 13 6.05 0.65 14 7.72 0.92 15 11.08 2.97 16 6.16 1.40 17 6.98 0.63 18 6.38 2.10 19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 <td></td> <td></td> <td>3.27</td> <td>0.15</td> <td></td>			3.27	0.15	
6 7.57 1.41 7 9.41 0.80 8 16.08 3.42 9 6.33 0.92 10 14.33 1.53 11 15.09 2.17 12 17.65 2.68 13 6.05 0.65 14 7.72 0.92 15 11.08 2.97 16 6.16 1.40 17 6.98 0.63 18 6.38 2.10 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used			13.61		
7 9.41 0.80 8 16.08 3.42 9 6.33 0.92 10 14.33 1.53 11 15.09 2.17 12 17.65 2.68 13 6.05 0.65 14 7.72 0.92 15 11.08 2.97 16 6.16 1.40 17 6.98 0.63 18 6.38 2.10 19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that col			13.05	2.93	
8 16.08 3.42 9 6.33 0.92 10 14.33 1.53 11 15.09 2.17 12 17.65 2.68 13 6.05 0.65 14 7.72 0.92 15 11.08 2.97 16 6.16 1.40 17 6.98 0.63 18 6.38 2.10 19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want t			7.57	1.41	
9 6.33 0.92 10 14.33 1.53 11 15.09 2.17 12 17.65 2.68 13 6.05 0.65 14 7.72 0.92 15 11.08 2.97 16 6.16 1.40 17 6.98 0.63 18 6.38 2.10 19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, wha confidence interval?			9.41	0.80	
10 14.33 1.53 11 15.09 2.17 12 17.65 2.68 13 6.05 0.65 14 7.72 0.92 15 11.08 2.97 16 6.16 1.40 17 6.98 0.63 18 6.38 2.10 19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, wha confidence level should be used for the confidence interval? Choose the correct answer			16.08	3.42	
11 15.09 2.17 12 17.65 2.68 13 6.05 0.65 14 7.72 0.92 15 11.08 2.97 16 6.16 1.40 17 6.98 0.63 18 6.38 2.10 19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. Choose the correct answer		I	6.33	0.92	
12 17.65 2.68 13 6.05 0.65 14 7.72 0.92 15 11.08 2.97 16 6.16 1.40 17 6.98 0.63 18 6.38 2.10 19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. 0.6 90% or 0.90 0.7 90% or 0.90			14.33		
13 6.05 0.65 14 7.72 0.92 15 11.08 2.97 16 6.16 1.40 17 6.98 0.63 18 6.38 2.10 19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, whe confidence level should be used for the confidence interval? Choose the correct answer below. OA 95% or 0.95 OB 99% or 0.90 OC 90% or 0.90			15.09		
14 7.72 0.92 15 11.08 2.97 16 6.16 1.40 17 6.98 0.63 18 6.38 2.10 19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. OA 95% or 0.95 OB 99% or 0.90 OC 90% or 0.90		0.000		12223	
15 11.08 2.97 16 6.16 1.40 17 6.98 0.63 18 6.38 2.10 19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. OA 95% or 0.95 OB 99% or 0.90				1012.1012.2	
16 6.16 1.40 17 6.98 0.63 18 6.38 2.10 19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. OA 95% or 0.95 B 99% or 0.90 C 90% or 0.90		0.7652		Second Second Second	
17 6.98 0.63 18 6.38 2.10 19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. A 95% or 0.95 B 99% or 0.99 C 90% or 0.90		12 (24)(23)	11.08		
18 6.38 2.10 19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. A 95% or 0.95 B 99% or 0.90 C 90% or 0.90 C 90% or 0.90			6.16	1.40	
19 12.73 3.53 20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81					
20 9.83 1.49 21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81					
21 9.55 2.19 22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81			12.73		
22 16.39 2.31 23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. OA OA 95% or 0.95 OB 99% or 0.90					
23 13.31 4.69 24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. A 0 95% or 0.95 0 B 0 9.90% or 0.90		I			
24 12.32 2.66 25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. 0A 95% or 0.95 0B 99% or 0.90					
25 9.45 0.72 26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. OA OA 95% or 0.95 OB 99% or 0.90			13.31		
26 2.80 1.41 27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. OA 95% or 0.95 OB 99% or 0.90 OC 90% or 0.90					
27 6.83 0.85 28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. OA 95% or 0.95 OB 99% or 0.90 OC 90% or 0.90				100 M (S) (S)	
28 5.86 0.93 29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. OA. 95% or 0.95 OB. 99% or 0.90 OC. 90% or 0.90		1010300		999 B.B.B.B.B.	
29 7.98 1.45 30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. OA. 95% or 0.95 OB. 99% or 0.99 OC. 90% or 0.90				10.0117.00.03	
30 6.96 1.81 17. If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. OA. 95% or 0.95 OB. 99% or 0.99 OC. 90% or 0.90		0.22335			
 If you want to construct a confidence interval to be used for testing the claim that college students have a mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. OA. 95% or 0.95 OB. 99% or 0.99 OC. 90% or 0.90 					
 mean IQ score that is greater than 100, and you want the test conducted with a 0.01 significance level, what confidence level should be used for the confidence interval? Choose the correct answer below. A. 95% or 0.95 B. 99% or 0.99 C. 90% or 0.90 		30	6.96	1.81	
 A. 95% or 0.95 B. 99% or 0.99 C. 90% or 0.90 	17.	mean IQ scor	e that is gr	eater than 1	100, and you want the test conducted with a 0.01 significance level, what
B. 99% or 0.99 C. 90% or 0.90		Choose the co	orrect ansv	ver below.	
O.C. 90% or 0.90		OA. 95% or	0.95		
OD. 98% or 0.98					
		OD. 98% or	0.98		

Student: _ Date: Time:	Instructor: Darryl Allen Assignment: Ch 9 Practice Exam A Course: Elementary Statistics 60157 Book: Triola: Elementary Statistics, 11e
18.	Assume you plan to construct a 95% confidence interval. The numbers of online applications from simple random samples of college applications for 2003 and for the current year are given below. Find (a) the margin of error E, and (b) the 95% confidence interval.
	2003 Current Year
	Number of applications in sample 31 28
	Number of online applications in sample 10 14
	a. The margin of error is
	b. Let p_1 be the proportion of online applications for 2003 and p_2 be the proportion of online applications for the current year. Find the 95% confidence interval estimate of the difference in proportions, $p_1 - p_2$.
	(Round to four decimal places as needed.)
19.	The data below are yields for two different types of corn seed that were used on adjacent plots of land.
	Type 1 2045 2084 2119 2434 2222 2073 2235 1464 Image: Comparison of the second se
	a. Using a 0.05 significance level, test the claim that there is no difference between the yields of the two types of seed. Do they appear to have different yields?
	OA. Yes, because the null hypothesis is rejected.
	OB. No, because the null hypothesis is rejected.
	OC. No, because the null hypothesis is not rejected.
	OD. Yes, because the null hypothesis is not rejected.
	b. Construct a 95% confidence interval for the mean difference between the yields from the two different types of seed.
	$\square < \mu_d < \square$ (Round to two decimal places as needed.)
	 c. Does it appear that either type of seed is better? A. Yes, because the confidence interval does not include zero and the null hypothesis is rejected.
	OB. No, because the confidence interval includes zero and the null hypothesis is not rejected.
	OC. Yes, because the confidence interval includes zero and the null hypothesis is not rejected.
	OD. No, because the confidence interval does not include zero and the null hypothesis is rejected.

Unfiled Notes Page 9

Student: Date: Fime:	Instructor: Darryl Allen Assignment: Ch 9 Practice Exam A Course: Elementary Statistics 60157 Book: Triola: Elementary Statistics, 11e
20.	Listed below are ages of actresses and actors from a country at the times that they won a certain award. The data are paired according to the years that they won. Use a 0.01 significance level to test the belief that best actresses are younger than best actors. Does the result suggest a problem in that culture? Assume that the paired sample data is a simple random sample and that the differences have a distribution that is approximately normal.
	Best Actresses 24 27 36 25 42 27 41 21 39 28 29 40 39 33 32 Image: State Stat
	Since the test statistic \checkmark in the critical region, \checkmark H ₀ . There is \checkmark evidence to support the belief that best actresses are younger than best actors. This result suggests that there \checkmark a problem in that culture.

Page 10

Student:		Instructor: Darryl Allen	Assignment: Ch 9 Practice Exam A
Date:		Course: Elementary Statistics 60157 Book: Triola: Elementary Statistics, 11e	
Time:		Book: Triola: Elementary Statistics, 11e	
1.	D		
2.	greater than		
	insufficient		
3.	- 0.25		
	2.816		
	- 0.251		
	2.365		
4.	A		
5.	С		
6.	-0.773		
0.	2.873		
	D		
7.	0.016		
/.	0.088		
8.	А		
9.	Reject		
9.	is		
	Yes		
	does		
	does		
10.	С		
11.	D		
12.	- 0.047		
	0.087		
	В		
13.	A		
		ANSWERS - Page 1	

14. D 15. Fail to reject is not 16. 6.843 9.535 A 17. D
is not 16. 6.843 9.535 A
16. 6.843 9.535 A
17. D
18. 0.24775 - 0.4252 0.0703
19. A 24.62 95.13 A
20. falls reject sufficient is

ANSWERS - Page 2