










## Learning Check EF-2

If the molecular formula has 4 atoms of N, what is the molecular formula if SN is the empirical formula? Explain.

# Determination of Empirical Formulas

What is the empirical formula of a substance that contains Cl, C, and H?

 $CI_{\chi} C_{\gamma} H_{Z}$ 

What do the X, Y, and Z represent?

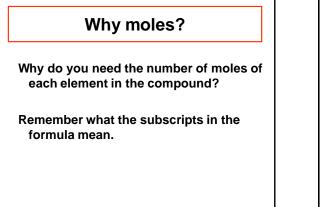
Empirical formulas are determined from percent composition experiments

Timberlake LecturePLUS

• Elemental analysis that usually involves burning the sample → combustion analysis

### Finding the Empirical Formula

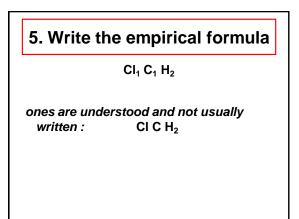
The problem:

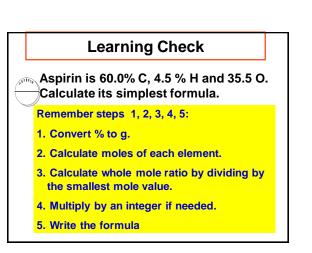

Combustion analysis showed that a compound is CI 71.65%, C 24.27%, and H 4.07%. What is the empirical formula?

1. State mass percents as grams in a 100.00-g sample of the compound.

CI 71.65% → CI 71.65 g

- C 24.27%  $\longrightarrow$  C 24.27 g
- H 4.07% → H 4.07 g


2. Calculate the number of moles of each element. 71.65 g Cl x <u>1 mol Cl</u> = 2.02 mol Cl 35.5 g Cl 24.27 g C x <u>1 mol C</u> = 2.02 mol C 12.0 g C 4.07 g H x <u>1 mol H</u> = 4.04 mol H 1.01 g H




| divid |                     | mole | whole number ratio by value by the <u>e</u> : |
|-------|---------------------|------|-----------------------------------------------|
| CI:   | <u>2.02</u><br>2.02 | =    | 1 CI                                          |
| C:    | <u>2.02</u><br>2.02 | =    | 1 C                                           |
| H:    | <u>4.04</u><br>2.02 | =    | 2 H                                           |

| 4. Clear decimal by multiplying by an<br>integer    |                       |     |   |                            |
|-----------------------------------------------------|-----------------------|-----|---|----------------------------|
| A fraction between 0.1 and 0.9 must not be rounded. |                       |     |   |                            |
|                                                     | ly all res<br>numbers |     |   | integer to give<br>cripts. |
| (1/2)                                               | 0.5                   | x 2 | = | 1                          |
| (1/3)                                               | 0.333                 | x 3 | = | 1                          |
| (1/4)                                               | 0.25                  | x 4 | = | 1                          |
| (3/4)                                               | 0.75                  | x 4 | = | 3                          |
|                                                     |                       |     |   |                            |
|                                                     |                       |     |   |                            |

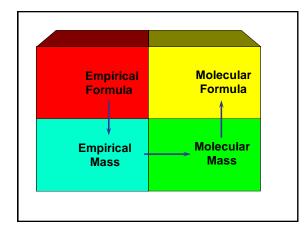
| 01. | <u>2.02</u><br>2.02 | = | 1 CI |
|-----|---------------------|---|------|
| C:  | <u>2.02</u><br>2.02 | = | 1 C  |
| H:  | <u>4.04</u><br>2.02 | = | 2 H  |





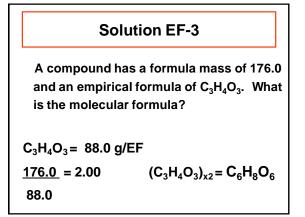
# Step 1. Convert % to grams

C:  $60.0\% \rightarrow 60.0 \text{ g}$ H:  $4.5\% \rightarrow 4.5 \text{ g}$ O:  $35.5\% \rightarrow 35.5 \text{ g}$ 


| $60.0 \text{ g C x} \frac{1 \text{ mol C}}{12.0 \text{ g C}} = 5.00 \text{ mol C}$ $12.0 \text{ g C}$ $4.5 \text{ g H} \text{ x} \frac{1 \text{ mol H}}{1.01 \text{ g H}} = 4.5 \text{ mol H}$ $35.5 \text{ g O x} \frac{1 \text{ mol O}}{16.0 \text{ g O}} = 2.22 \text{ mol O}$ | Step 2. Convert grams to moles |                           |    |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------|----|------------|
| 1.01 g H<br>35.5 g O x <u>1mol O</u> = 2.22 mol O                                                                                                                                                                                                                                 | 60.0gC x                       |                           | _= | 5.00 mol C |
| <u> </u>                                                                                                                                                                                                                                                                          | 4.5gH x                        |                           | =  | 4.5 mol H  |
| 1010 9 0                                                                                                                                                                                                                                                                          | 35.5gOx                        | <u>1mol O</u><br>16.0 g O | =  | 2.22 mol O |

| Step 3. Divide by the smallest # of moles     |
|-----------------------------------------------|
| <u>5.00 mol C</u> = <u>2.25</u><br>2.22 mol O |
| <u>4.5 mol H</u> = <u>2.00</u><br>2.22 mol O  |
| <u>2.22 mol O</u> = <u>1.00</u><br>2.22 mol O |
| Are are the results whole numbers? <b>NO!</b> |

| Step 4. Multiply                                                                           | by an integer to clear decimal |  |
|--------------------------------------------------------------------------------------------|--------------------------------|--|
| Multiply by 4:                                                                             |                                |  |
| C: 2.25 mol C                                                                              | x 4 = 9 mol C                  |  |
| H: 2.0 mol H                                                                               | x 4 = 8 mol H                  |  |
| O: 1.00 mol O                                                                              | x 4 = 4 mol O                  |  |
| Step 5. Write the formula using the whole numbers of mols as the subscripts in the formula |                                |  |
| C <sub>9</sub> H <sub>8</sub> O <sub>4</sub>                                               |                                |  |


| 6.6 Types of Formulas |                               |           |  |  |
|-----------------------|-------------------------------|-----------|--|--|
| Two kinds:            |                               |           |  |  |
| 1. Empir              | 1. Empirical formula          |           |  |  |
| 2. Molec              | 2. Molecular(true) formula.   |           |  |  |
|                       |                               |           |  |  |
| <b>Empirical</b>      | Molecular (true)              | Name_     |  |  |
| СН                    | $C_2H_2$                      | acetylene |  |  |
| СН                    | C <sub>6</sub> H <sub>6</sub> | benzene   |  |  |
| CH₂O                  | C₅H <sub>10</sub> O₅          | ribose    |  |  |
|                       |                               |           |  |  |

| 6.7 Molecular Formulas                                                     |  |
|----------------------------------------------------------------------------|--|
| <u>molar mass</u> = a whole number = n<br>simplest mass                    |  |
| n = 1 molar mass = empirical mass<br>molecular formula = empirical formula |  |
| n = 2 molar mass = 2 x empirical mass<br>molecular formula =               |  |
| 2 x empirical formula                                                      |  |
| molecular formula = or > empirical formula                                 |  |





A compound has a formula mass of 176.0 and an empirical formula of  $C_3H_4O_3$ . What is the molecular formula?



### Learning Check EF-4

If there are 192.0 g of O in the molecular formula, what is the true formula if the EF is  $C_7H_6O_4$ ?

### **Solution EF-4**

If there are 192.0 g of O in the molecular formula, what is the true formula if the EF is  $C_7H_6O_4$ ?

EF: 40 x 16 = 64 g 0 MF/EF = <u>192 g 0 in MF</u> = 3 , therefore 64.0 g 0 in EF 3 x C<sub>7</sub>H<sub>6</sub>O<sub>4</sub> EF = C<sub>21</sub>H<sub>18</sub>O<sub>12</sub> MF