### 6.6 Empirical and 6.7 Molecular Formulas

### 6.6 Empirical Formulas

Write your own one-sentence definition for each of the following:
Empirical formula

Molecular formula

## Learning Check EF-1

A. What is the empirical formula for $\mathrm{C}_{4} \mathrm{H}_{8}$ ?

## Types of Formulas

Two kinds:

1. Empirical formula
2. Molecular(true) formula.

| Empirical | Molecular | Name |
| :--- | :--- | :--- |
| CH | $\mathrm{C}_{2} \mathrm{H}_{2}$ | acetylene |
| CH | $\mathrm{C}_{6} \mathrm{H}_{6}$ | benzene |
| $\mathrm{CO}_{2}$ | $\mathrm{CO}_{2}$ | carbon dioxide |
| $\mathrm{CH}_{2} \mathrm{O}$ | $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$ | ribose |

- An empirical formula represents the simplest whole number ratio of the atoms in a compound.
- The molecular formula is the true or actual ratio of the atoms in a compound.


## Learning Check EF-2

B. What is a molecular formula for $\mathrm{CH}_{2} \mathbf{O}$ ?

## Learning Check EF-2

If the molecular formula has 4 atoms of N , what is the molecular formula if SN is the empirical formula? Explain.

Empirical formulas are determined from percent composition experiments

- Elemental analysis that usually involves burning the sample $\rightarrow$ combustion analysis

1. State mass percents as grams in a $100.00-\mathrm{g}$ sample of the compound.
$\mathrm{Cl} 71.65 \% \longrightarrow \mathrm{Cl} 71.65 \mathrm{~g}$

C $24.27 \% \longrightarrow$ C 24.27 g

H 4.07\%
H 4.07 g

## Determination of Empirical

 FormulasWhat is the empirical formula of a substance that contains $\mathrm{Cl}, \mathrm{C}$, and H ?

$$
C I_{X} C_{Y} H_{z}
$$

What do the $X, Y$, and $Z$ represent?

## Finding the Empirical Formula

The problem:
Combustion analysis showed that a compound is $\mathrm{Cl} 71.65 \%$, C 24.27\%, and $\mathrm{H} 4.07 \%$. What is the empirical formula?


## Why moles?

Why do you need the number of moles of each element in the compound?

Remember what the subscripts in the formula mean.
4. Clear decimal by multiplying by an integer
A fraction between 0.1 and 0.9 must not be rounded.
Multiply all results by an integer to give whole numbers for subscripts.

| $(1 / 2)$ | 0.5 | $\times 2=1$ |
| :--- | :--- | :--- |
| $(1 / 3)$ | 0.333 | $\times 3=$ |
| $(1 / 4)$ | 0.25 | $\times 4=1$ |
| $(3 / 4)$ | 0.75 | $\times 4=3$ |

(1/2) 0.5
x2 $=1$
(1/3) 0.333
$x 4=1$
(3/4) $0.75 \quad x 4=3$

## 5. Write the empirical formula

$$
\mathrm{Cl}_{1} \mathrm{C}_{1} \mathrm{H}_{2}
$$

ones are understood and not usually written : ClCH
3. Find the smallest whole number ratio by dividing each mole value by the smallest mole value:

Cl: $2.02=1 \mathrm{Cl}$
2.02

C: $2.02=1 \mathrm{C}$
2.02
$\mathrm{H}: \frac{4.04}{2.02}=2 \mathrm{H}$
No decimals.....
$\mathrm{Cl}: \frac{2.02}{2.02}=1 \mathrm{Cl}$
$\mathrm{C}: \frac{2.02}{2.02}=1 \mathrm{C}$
$\mathrm{H}: \frac{4.04}{2.02}=2 \mathrm{H}$

## Learning Check

Aspirin is $60.0 \% \mathrm{C}, 4.5 \% \mathrm{H}$ and 35.5 O . Calculate its simplest formula.
Remember steps 1, 2, 3, 4, 5 :

1. Convert \% to g .
2. Calculate moles of each element.
3. Calculate whole mole ratio by dividing by the smallest mole value.
4. Multiply by an integer if needed.
5. Write the formula

## Step 1. Convert \% to grams

C: $\mathbf{6 0 . 0 \%} \rightarrow 60.0 \mathrm{~g}$
H: $4.5 \% \rightarrow 4.5 \mathrm{~g}$
O: $35.5 \% \rightarrow 35.5 \mathrm{~g}$

Step 3. Divide by the smallest \# of moles
$\frac{5.00 \mathrm{~mol} \mathrm{C}}{2.22 \mathrm{~mol} \mathrm{O}}=\underline{2.25}$
$\frac{4.5 \mathrm{~mol} \mathrm{H}}{2.22 \mathrm{~mol} \mathrm{O}}=\underline{2.00}$
$\frac{2.22 \mathrm{~mol} \mathrm{O}}{2.22 \mathrm{~mol} \mathrm{O}}=1.00$
Are are the results whole numbers? NO!

### 6.6 Types of Formulas

Two kinds:

1. Empirical formula
2. Molecular(true) formula.

| 6.6 Types of Formulas |  |  |
| :---: | :---: | :---: |
| Two kinds: <br> 1. Empirical formula <br> 2. Molecular(true) formula. |  |  |
|  |  |  |
|  |  |  |
| Empirical | Molecular (true) | Name |
| CH | $\mathrm{C}_{2} \mathrm{H}_{2}$ | acetylene |
| CH | $\mathrm{C}_{6} \mathrm{H}_{6}$ | benzene |
| $\mathrm{CH}_{2} \mathrm{O}$ | $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$ | ribose |

## Step 2. Convert grams to moles

$$
\begin{aligned}
& 60.0 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.0 \mathrm{~g} \mathrm{C}}=5.00 \mathrm{~mol} \mathrm{C} \\
& 4.5 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.01 \mathrm{~g} \mathrm{H}}=4.5 \mathrm{~mol} \mathrm{H} \\
& 35.5 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.0 \mathrm{~g} \mathrm{O}}=2.22 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

Step 4. Multiply by an integer to clear decimal

Multiply by 4:
C: $2.25 \mathrm{molC} \quad x 4=9 \mathrm{molC}$
H: 2.0 mol H
x $4=8 \mathrm{~mol} \mathrm{H}$
O: 1.00 mol O
x $4=4 \mathrm{molo}$

Step 5. Write the formula using the whole numbers of mols as the subscripts in the formula

$$
\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}
$$

### 6.7 Molecular Formulas

$\underline{\text { molar mass }}=\mathbf{a}$ whole number $=\mathbf{n}$ simplest mass
$\mathrm{n}=1$ molar mass = empirical mass
molecular formula $=$ empirical formula
$\mathrm{n}=2$ molar mass $=2 \mathrm{x}$ empirical mass
molecular formula = $2 \times$ empirical formula
molecular formula $=$ or > empirical formula


## Solution EF-3

A compound has a formula mass of 176.0 and an empirical formula of $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$. What is the molecular formula?
$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}=88.0 \mathrm{~g} / \mathrm{EF}$
$\underline{176.0}=2.00 \quad\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}\right)_{\mathrm{x} 2}=\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$ 88.0

## Learning Check EF-3

A compound has a formula mass of 176.0 and an empirical formula of $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$. What is the molecular formula?

## Solution EF-4

If there are 192.0 g of O in the molecular formula, what is the true formula if the EF is $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{4}$ ?

```
EF: 40 x 16=64 g O
MF/EF =
    192 g O in MF = 3 ,
64.0 g O in EF
\[
3 \times \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{4} \mathrm{EF}=\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{12} \mathrm{MF}
\]
```

