

Monatomic Ion Names

- Monatomic Cations
- (name of metal)
- Groups 1, 2, and 3 metals
- $\mathrm{Al}^{3+}, \mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Ag}^{+}$
- (name of metal)(Roman numeral)
- All metallic cations not mentioned above
- Monatomic Anions
- (root of nonmetal name)ide

Roots of Nonmetals

H hydr-
F fluor-
C carb-
N nitr-
P phosph-
O ox-
S sulf-
Se selen-

	Monatomic Ion Names
a	- Monatomic Cations - (name of metal)
a, a	- Groups 1, 2, and 3 metals
a	- $\mathrm{Al}^{3+}, \mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Ag}^{+}$
	- (name of metal)(Roman numeral) - All metallic cations not mentioned above
\therefore -	- Monatomic Anions
-	- (root of nonmetal name)ide

Monatomic Anions

Polyatomic Ions

Hydride $\mathrm{H}^{-} \quad$ fluoride F^{-}
Nitride N ${ }^{3-}$
Phosphide P^{3-}
Oxide O^{2-}
Sulfide S^{2-}
selenide Se^{2-}
chloride Cl^{-}
bromide Br^{-} iodide I^{-} -

Polyatomic Ions with Hydrogen

- HCO_{3}^{-}hydrogen carbonate
- HSO_{4}^{-}hydrogen sulfate
- HS^{-}hydrogen sulfide
- $\mathrm{HPO}_{4}{ }^{2-}$ hydrogen phosphate
- $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$dihydrogen phosphate

Recognizing Ionic Compounds

- Metal-nonmetal...binary ionic compound

- Metal-polyatomic ion
- Ammonium-nonmetal or ammonium polyatomic ion

Cation Names

Metals with one possible charge (AI, Zn, Cd, and Groups 1, 2,3)	name of metal
Metals with more than one possible charge (the rest)	name(Roman numeral)
polyatomic cations (e.g. ammonium)	name of polyatomic ion

Common Names

$-\mathrm{H}_{2} \mathrm{O}$, water
$-\mathrm{NH}_{3}$, ammonia
$-\mathrm{CH}_{4}$, methane
$-\mathrm{C}_{2} \mathrm{H}_{6}$, ethane
$-\mathrm{C}_{3} \mathrm{H}_{8}$, propane

Naming Binary Covalent Compounds

- Write a prefix to indicate the subscript for the second element.
- Write the root of the name of the second symbol in the formula.
- Add -ide to the end of the name.

Binary Covalent

Naming Binary Covalent Compounds

- If the subscript for the first element is greater than one, indicate the subscript with a prefix.
- We do not write mono- on the first name.
- Leave the "a" off the end of the prefixes that end in "a" and the " o " off of mono- if they are placed in front of an element that begins with a vowel (oxygen or iodine).
- Follow the prefix with the name of the first element in the formula.

Writing Binary Covalent Formulas

- Write the symbols for the elements in the order mentioned in the name.
- Write subscripts indicated by the prefixes. If the first part of the name has no prefix, assume it is mono-.

Arrhenius Acid Definition

- An acid is a substance that generates hydronium ions, $\mathrm{H}_{3} \mathrm{O}^{+}$ (often described as H^{+}), when added to water.
- An acidic solution is a solution with a significant concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions.

Strong Acid and Water

When HCl dissolves in water, hydronium ions, $\mathrm{H}_{3} \mathrm{O}^{+}$, and chloride ions, Cl^{-}, ions form.

Weak Acid and Water

Acetic acid reacts with water in a reversible reaction, which forms hydronium and acetate ions.

Solution of Weak Acid

In a typical acetic acid solution, there areabout 250 times as many uncharged acetic acid molecules, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, as acetate ions, $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$.

Acid Summary

Binary acid	Strong hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$	Weak hydrofluoric acid
Oxyacid	nitric acid, HNO_{3} sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$	other acids with $\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$
Organic acid	none	acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

Chemical Nomenclature

- General procedure for naming compounds (See Table 5.5 in the text.)
- Step 1: Decide what type of compound the name or formula represents.
- Step 2: Apply the rules for writing the name or formula for that type of compound.

