

Energy Terms

- Energy = the capacity to do work
- Work, in this context, may be defined as what is done to move an object against some sort of resistance.

Two Types of Energy

- Kinetic Energy = the energy of motion

$$
=1 / 2 m \mu^{2}
$$

- Potential Energy = energy by virtue of position or state

Bond Breaking and Potential Energy

Bond Making and Potential Energy

Units of Energy

- $\operatorname{Joule}(\mathrm{J})=\frac{\mathrm{kg} \mathrm{m}^{2}}{\mathrm{~s}^{2}}$
- $4.184 \mathrm{~J}=1 \mathrm{cal}$
- $4.184 \mathrm{~kJ}=1 \mathrm{kcal}$
- $4184 \mathrm{~J}=1 \mathrm{Cal}$ (dietary calorie)
- $4.184 \mathrm{~kJ}=1 \mathrm{Cal}$

A Light Wave's Electric and Magnetic Fields

Atomic Theory

- To see a World in a Grain of Sand And a Heaven in a Wild Flower Hold Infinity in the palm of your hand And Eternity in an hour

William Blake Auguries of Innocence

- Thus, the task is not so much to see what no one has yet seen, but to think what nobody has yet thought, about that which everybody sees.

Erwin Schrodinger

Ways to deal with Complexity and Uncertainty

- Analogies In order to communicate something of the nature of the electron, scientists often use analogies. For example, in some ways, electrons are like vibrating guitar strings.
- Probabilities In order to accommodate the uncertainty of the electron's position and motion, we refer to where the electron probably is within the atom instead of where it definitely is.

Wave Character of the Electron

- Just as the intensity of the movement of a guitar string can vary, so can the intensity of the negative charge of the electron vary at different positions outside the nucleus.
- The variation in the intensity of the electron charge can be described in terms of a three-dimensional standing wave like the standing wave of the guitar string.

Particle Interpretation of $1 s$ Orbital

Cutaway of 1 s and 2 s Orbitals

 of the electron in a $1 s$ orbital of a hydrogen atom might look like this.

Ground State and Excited State

- Hydrogen atoms with their electron in the $1 s$ orbital are said to be in their ground state.
- A hydrogen atom with its electron in the $2 s$ orbital is in an excited state.

$\mathbf{2} p_{x}, \mathbf{2} p_{y}$, and $\mathbf{2} p_{z}$ Orbitals

$2 p_{z}$

Orbitals for Ground States of Known Elements

3d Orbitals

Four of the five $3 d$ orbitals have a double dumbbell shape like this one.

The fifth $3 d$ orbital is shaped like a dumbell and a donut.

Pauli Exclusion Principle

- No two electrons in an atom can be the same in all ways.
- There are four ways that electrons can be the same:
- Electrons can be in the same principal energy level.
- They can be in the same sublevel.
- They can be in the same orbital.
- They can have the same spin.
- The sublevels are filled in such a way as to yield the lowest overall potential energy for the atom.
- No two electrons in an atom can be the same in all ways. This is one statement of the Pauli Exclusion Principle.
- When electrons are filling orbitals of the same energy, they prefer to enter empty orbitals first, and all electrons in half-filled orbitals have the same spin. This is called Hund's Rule.

Writing Electron Configurations

- Determine the number of electrons in the atom from its atomic number.
- Add electrons to the sublevels in the correct order of filling.
- Add two electrons to each s sublevel, 6 to each p sublevel, 10 to each d sublevel, and 14 to each f sublevel.
- To check your complete electron configuration, look to see whether the location of the last electron added corresponds to the element's position on the periodic table.

Order of Filling from the Periodic Table

Long Periodic Table

f block

Writing Abbreviated Electron Configurations

- Find the symbol for the element on a periodic table.
- Write the symbol in brackets for the noble gas located at the far right of the preceding horizontal row on the table.
- Move back down a row (to the row containing the element you wish to describe) and to the far left. Following the elements in the row from left to right, write the outer-electron configuration associated with each column until you reach the element you are describing.
Writing Abbreviated
Electron Configurations

Find the symbol for the element on a
periodic table.
Write the symbol in brackets for the noble
gas lecated at the far right of the
preceding horizontal row on the table.
Move back down a row (to the row
containing the element you wish to
describe) and to the far left. Following the
elements in the row from left to right,
write the outer-electron configuration
associated with each column until you
reach the element you are describing.

Abbreviated Electron Configurations

- The highest energy electron are most important for chemical bonding.
- The noble gas configurations of electrons are especially stable and, therefore, not important for chemical bonding.
- We often describe electron configurations to reflect this representing the noble gas electrons with a noble gas symbol in brackets.
- For example, for sodium $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$ goes to $[\mathrm{Ne}] 3 s^{1}$

Abbreviated Electron Configurations Optional Step

- Rewrite the abbreviated electron configuration, listing the sublevels in the order of increasing principal energy level (all of the 3's before the 4's, all of the 4's before the 5's, etc.)

Common Mistakes

- Complete electron configurations miscounting electrons (Use the periodic table to determine order of filling.)
- Orbital diagrams - forgetting to leave electrons unpaired with the same spin when adding electrons to the p, d, or f sublevels (Hund's Rule)
- Abbreviated electron configurations
- Forgetting to put $4 f^{14}$ after [Xe]
- Forgetting to list sublevels in the order of increasing principal energy level

