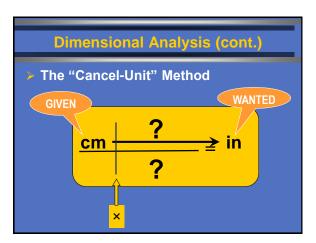
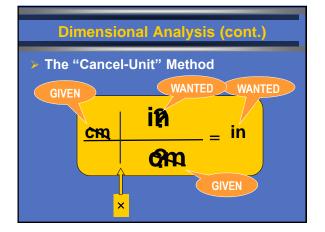


Metric-metric conversion (cont.) Conversion factors are derived from the meaning of the prefixes The numerical value of the prefix is always associated with the base unit. 1 km = 1000 m 1 km = 1000 m

Metric-metric conversion (cont.)

- Conversion factors are derived from the meaning of the prefixes
- The numerical value of the prefix is always associated with the base unit.

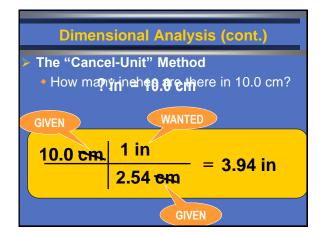


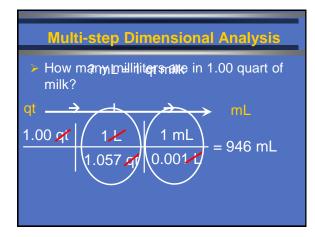

Dimensional Analysis

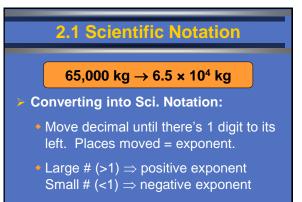
- The "Cancel-Unit" Method
 - Units, or "labels" are canceled, or "factored" out
 - Considering only the units, how would you calculate the number of inches in 10.0 cm?

Dimensional Analysis (cont.)

- Steps:
 - 1. Identify the starting (given) & ending (wanted) unit(s).
 - 2. Use one or more conversion factors so given units cancel when multiplied, leaving wanted unit(s).

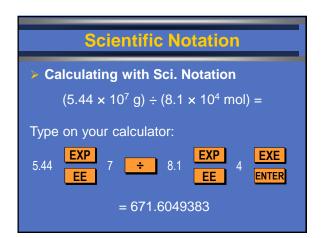


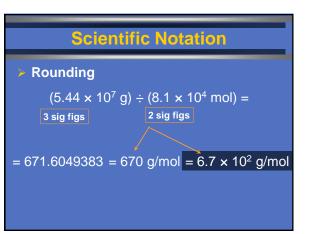


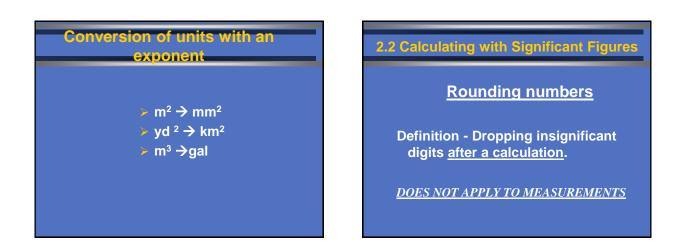

Dimensional Analysis (cont.)

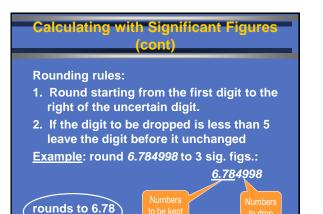
Steps:

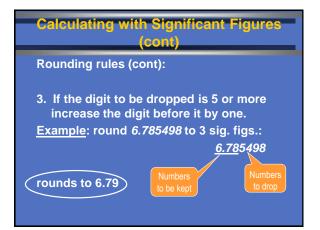
- 1. Identify the starting (given) & ending (wanted) unit(s).
- 2. Use one or more conversion factors so given units cancel when multiplied, leaving wanted unit(s).
- 3. Multiply all top numbers & divide by each bottom number.
- 4. Check units & answer.

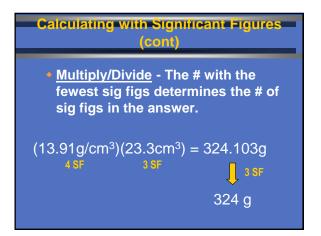


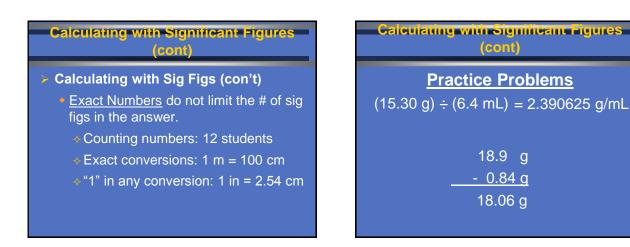


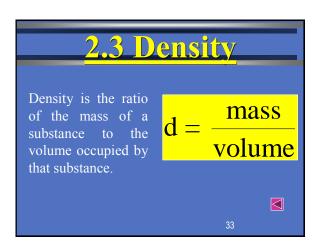



Only include sig figs.

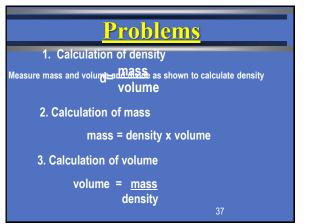

Scientific Notation (cont.)					
Practice Problems					
7.	2,400,000 µg	sci. notation			
8.	0.00256 kg	sci. notation			
9.	$7 \times 10^{-5} \text{ km}$	decimal notation			
10.	$6.2 \times 10^4 \text{ mm}$	decimal notation			

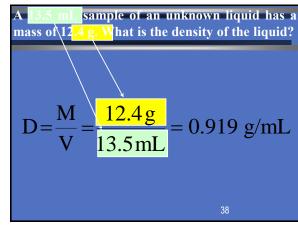


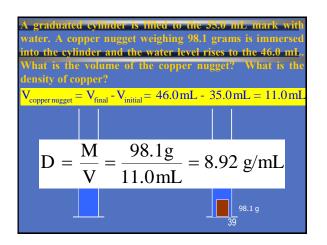


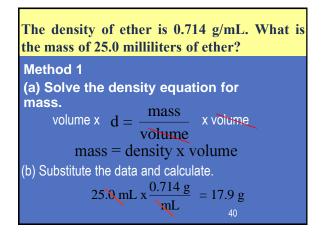


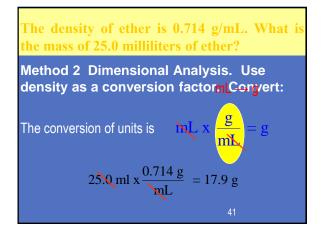
Solids	Density (g/cm ³ at 25°C)*	Liquids	Density (g/mL at 25°C)*	Gases	Density (g/L at 25°(1 atm)*
Gold	19.3	Mercury	13.55	Chlorine	3.17
Lead	11.3	Milk	1.028-1.035	Carbon dioxide	1.96
Copper	8.93	Blood plasma	1.027	Oxygen	1.42
Aluminum	2.70	Urine	1.003-1.030	Air (dry)	1.29
Table salt	2.16	Water	0.997	Nitrogen	1.25
Bone	1.7-2.0	Olive oil	0.92	Methane	0.66
Table sugar	1.59	Ethyl alcohol	0.79	Hydrogen	0.08
Wood, pine	0.30-0.50	Gasoline	0.56		
Density char	0.30–0.50 ges with temperature. (In a quently, the temperature n	most cases it decreases w nust be recorded along w	ith increasing temperatur		

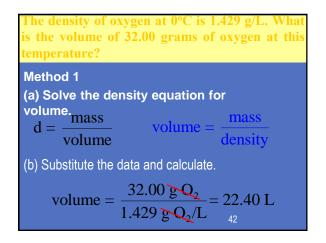

Densities of solids and liquids are compared to water. 1.0 g/ml.

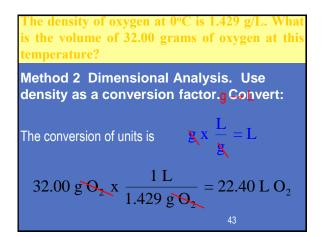

- •If density>water it sinks. Salt=2.16 g/cm³
- •If density<water it floats. Olive oil=0.92 g/mL

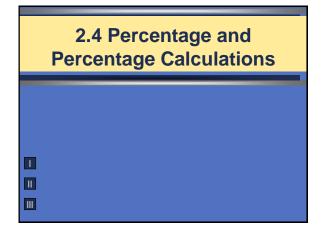

Densities of gases are compared to air (1.29 g/L).


- If density>air it sinks. CO₂=1.96 g/L
- If density<air it rises. H₂=0.08 g/L


36





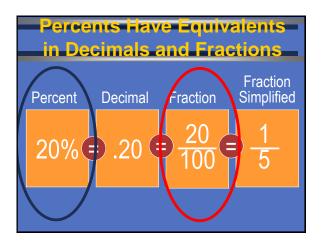


Metric-English Conversion using <u>density</u>						
 You have 1.5 pounds of gold. Find its volume in cm³ if the density of gold is 19.3 g/cm³. → Rgcm→Au च1.5 lb→Au cm³ 						
1.5 1	1 kg	1000 🎸	1 cm ³ = 35 cm ³			
	2.2 🖌	1 kg	19.3 4			

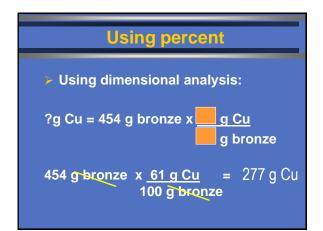
Definition

 Percent can be defined as "of one hund of "

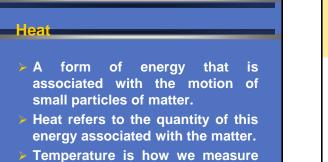
Definition


- A part per 100
- > Calculated as follows:

part x 100 = percent total


Example

An assortment of coins contains 6 pennies, 14 nickels, 9 dimes, 16 quarters and 5 half dollars. What percentage of coins are quarters?


Part quarters = 16 Total coins = 6 + 14 + 9 + 16 + 5 = 50 Percent = <u>part</u> x 100 = <u>16</u> x 100 = 32% total 50

Using percent					
A bronze alloy contains 61% copper and 39% tin. How many grams of copper are needed to make 454 g of bronze?					
remember 61% Cu = <u>61 units Cu</u> 100 units bronze					
<u>61 units Cu</u> = <u>61 g Cu</u> 100 units bronze 100 g bronze					

To convert between the scales use the following relationships.

$$^{\circ}$$
F - 32= 1.8 $^{\circ}$ x $^{\circ}$ C

$$K = {}^{o}C + 273.15$$

It is not uncommon for temperatures in the Canadian planes to reach –60°F and below during the winter. What is this temperature in °C and K?

$$\frac{{}^{\circ}F - 32}{{}^{PE}32} = \frac{8^{\circ} \times {}^{\circ}C}{1.8}$$
$$\frac{-60 - 32}{1.8} = -51 \, {}^{\circ}C$$

It is not uncommon for temperatures in the Canadian planes to reach -60° F and below during the winter. What is this temperature in °C and K?

$$K = {}^{\circ}C + 273.15$$

$$K = -51^{\circ}C + 273.15 = 222 K$$