Chp 2. Unit Conversion

$>$ English-English
$>$ Metric-metric
$>$ Metric-English or English-Metric $1 \mathrm{ft}=12$ in
$1 \mathrm{yd}=\mathbf{3} \mathrm{ft}$
$1 \mathrm{gal}=4 \mathrm{qt}$
$5280 \mathrm{ft}=1 \mathrm{mi}$

Conversion factors

- A ratio that specifies how one unit of measurement is related to another unit of measurement.
- Used to convert from one unit value to another unit value

How many seconds are there in 3.55 years?

2.1 Unit Analysis

- A ratio that specifies how one unit of measurement is related to another unit of measurement.
- Used to convert from one unit value to another unit value

How many seconds are there in 3.55 years?

 always associated with the base unit.
$1 \mathrm{~km}=1000 \mathrm{~m}$
The prefixed unit always has the
$1 \mu \mathrm{~m}=1 \times 10^{-6} \mathrm{~m}$ numerical value 1

Metric-metric conversion (cont.)

> Conversion factors are derived from the meaning of the prefixes
$>$ The numerical value of the prefix is

Conversion factors (cont.)

> English-English
 \square

Metric-metric conversion (cont.)

> Conversion factors are derived from the meaning of the prefixes
$>$ The numerical value of the prefix is always associated with the base unit.
$1 \mathrm{~km}=1000 \mathrm{~m}\} \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}$ \& $\frac{1 \mathrm{~km}}{1000 \mathrm{~m}}$

Metric-metric conversion (cont.)
> Conversion factors are derived from the meaning of the prefixes
> The numerical value of the prefix is always associated with the base unit.
The number 1 always goes
with the prefixed unit.

The power of 10 always
goes with the unprefixed
unit.

Dimensional Analysis

> The "Cancel-Unit" Method

- Units, or "labels" are canceled, or "factored" out
- Considering only the units, how would you calculate the number of inches in 10.0 cm ?

Dimensional Analysis (cont.)

> Steps:

1. Identify the starting (given) \& ending (wanted) unit(s).
2. Use one or more conversion factors so given units cancel when multiplied, leaving wanted unit(s).

Dimensional Analysis (cont.)

> Steps:

1. Identify the starting (given) \& ending (wanted) unit(s).
2. Use one or more conversion factors so given units cancel when multiplied, leaving wanted unit(s).
3. Multiply all top numbers \& divide by each bottom number.
4. Check units \& answer.

2.1 Scientific Notation

$$
65,000 \mathrm{~kg} \rightarrow 6.5 \times 10^{4} \mathrm{~kg}
$$

$>$ Converting into Sci. Notation:

- Move decimal until there's 1 digit to its left. Places moved = exponent.
- Large \# (>1) \Rightarrow positive exponent Small \# (<1) \Rightarrow negative exponent
- Only include sig figs.

Multi-step Dimensional Analysis

> How manymilliiterimalie in 1.00 quart of milk?

Scientific Notation (cont.)

Practice Problems

7. $2,400,000 \mu \mathrm{~g}$ sci. notation
8. 0.00256 kg sci. notation
9. $7 \times 10^{-5} \mathrm{~km} \quad$ decimal notation
10. $6.2 \times 10^{4} \mathrm{~mm}$ decimal notation

Scientific Notation

$>$ Calculating with Sci. Notation

$$
\left(5.44 \times 10^{7} \mathrm{~g}\right) \div\left(8.1 \times 10^{4} \mathrm{~mol}\right)=
$$

Type on your calculator:

$=671.6049383$

Scientific Notation

$>$ Rounding

2.2 Calculating with Significant Figures

Rounding numbers

Definition - Dropping insignificant digits after a calculation.

DOES NOT APPLY TO MEASUREMENTS

Galculating whtmengmicainerigures (cont)

Practice Problems

$$
(15.30 \mathrm{~g}) \div(6.4 \mathrm{~mL})=2.390625 \mathrm{~g} / \mathrm{mL}
$$

18.9 g
$-\quad 0.84 \mathrm{~g}$
18.06 g

Table 3.3	Densities of Selected Solids, Liquids, and Gases				
Solids	$\begin{gathered} \text { Density } \\ \left(\mathrm{g} / \mathrm{cm}^{3} \text { at } 25^{\circ} \mathrm{C}\right)^{*} \end{gathered}$	Liquids	$\begin{gathered} \text { Density } \\ \left(\mathrm{g} / \mathrm{mL} \text { at } 25^{\circ} \mathrm{C}\right)^{*} \\ \hline \end{gathered}$	Gases	$\begin{aligned} & \text { Density } \\ & \left(\mathrm{g} / \mathrm{Lat} 25^{\circ} \mathrm{C},\right. \\ & 1 \mathrm{~atm})^{*} \end{aligned}$
Gold	19.3	Mercury	13.55	Chlorine	3.17
Lead	11.3	Milk	1.028-1.035	Carbon dioxide	1.96
Copper	8.93	Blood plasma	1.027	Oxygen	1.42
Aluminum	2.70	Urine	1.003-1.030	Air (dry)	1.29
Table salt	2.16	Water	0.997	Nitrogen	1.25
Bone	1.7-2.0	Olive oil	0.92	Methane	0.66
Table sugar	1.59	Ethyl alcohol	0.79	Hydrogen	0.08
Wood, pine	$0.30-0.50$	Gasoline	0.56		
${ }^{*}$ Density changes with temperature. (In most cases it decreases with increasing temperature, since almost all substances expand when heated.) Consequently, the temperature must be recorded along with a density value. In addition, the pressure of gases must be specified. Copyright © 2005 Pearson Prentice Hall, Inc.					
Notice units are different for solids, liquids and gases					

> Densities of solids and liquids are compared haterermermin
> -If density>water it sinks. Salt= $2.16 \mathrm{~g} / \mathrm{cm}^{3}$
> -If density<water it floats. Olive oil=0.92 g / mL
> Densities of gases are compared to air (1.29 g/L).
> - If density>air it sinks. $\mathrm{CO}_{2}=1.96 \mathrm{~g} / \mathrm{L}$
> - If density<air it rises. $\mathrm{H}_{2}=0.08 \mathrm{~g} / \mathrm{L}$

The density of ether is $0.714 \mathrm{~g} / \mathrm{mL}$. What is the mass of 25.0 milliliters of ether?

Method 2 Dimensional Analysis. Use density as a conversion factorm Congrert:

The conversion of units is $m \mathrm{~L} \times \frac{\mathrm{g}}{\mathrm{mK}}=\mathrm{g}$

$$
25.0 \mathrm{ml} \times \frac{0.714 \mathrm{~g}}{\mathrm{~mL}}=17.9 \mathrm{~g}
$$

41

The density of ether is $0.714 \mathrm{~g} / \mathrm{mL}$. What is the mass of 25.0 milliliters of ether?
Method 1
(a) Solve the density equation for mass.
volume $\mathrm{x} d=\frac{\text { mass }}{\text { volume }} \times$ voiume mass $=$ density x volume
(b) Substitute the data and calculate.

$$
25.0 \mathrm{~mL} x \frac{0.714 \mathrm{~g}}{\mathrm{~mL}}=17.9 \mathrm{~g}
$$

The density of oxygen at $0^{\circ} \mathrm{C}$ is $1.429 \mathrm{~g} / \mathrm{L}$. What is the volume of 32.00 grams of oxygen at this temperature?

Method 1
(a) Solve the density equation for volume. $\mathrm{d}=\frac{\text { mass }}{\text { volume }} \quad$ volume $=\frac{\text { mass }}{\text { density }}$
(b) Substitute the data and calculate.

$$
\text { volume }=\frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{1.429 \mathrm{~g} \mathrm{O}_{2} / \mathrm{L}}=22.40 \mathrm{~L}
$$

The density of oxygen at $0^{\circ} \mathrm{C}$ is $1.429 \mathrm{~g} / \mathrm{L}$. What is the volume of 32.00 grams of oxygen at this temperature?

Method 2 Dimensional Analysis. Use density as a conversion factor.g Convert:

$$
\begin{aligned}
& \text { The conversion of units is } \mathrm{gx} \frac{\mathrm{~L}}{\mathrm{~g}}=\mathrm{L} \\
& 32.00 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~L}}{1.429 \mathrm{~g} \mathrm{O}_{2}}=22.40 \mathrm{~L} \mathrm{O}_{2}
\end{aligned}
$$

43

2.4 Percentage and Percentage Calculations

1

॥
III

Definition

- A part per 100
- Calculated as follows:
part $\times 100=$ percent
total

Definition

 as "of one hund of " 101
Metric-English conversion using density

> You have 1.5 pounds of gold. Find its volume in cm^{3} if the density of gold is $19.3 \mathrm{~g} / \mathrm{cm}^{3}$.
$\mathrm{lb} \rightarrow$ RgcmìAu تु $1.5 \mathrm{lb} \times \mathrm{Mu} \quad \mathrm{cm}^{3}$

1.5 J	1 kg	1000 g	$1 \mathrm{~cm}^{3}$
	2.2 K	1 kg	19.3 f

$>$ Percent can be defined

Example
An assortment of coins contains 6 pennies,
14 nickels, 9 dimes, 16 quarters and 5
half dollars. What percentage of coins
are quarters?
Part quarters $=16$
Total coins $=6+14+9+16+5=50$
Percent $=$ part $\times 100=\frac{16}{50} \times 100=32 \%$
total

Using percent

> Using dimensional analysis:
? $\mathrm{g} \mathrm{Cu}=454 \mathrm{~g}$ bronze $\mathrm{x} \underset{\mathrm{g} \text { bu bronze }}{\square}$
454 gbronze $\times \frac{61 \mathrm{~g} \mathrm{Cu}}{100 \mathrm{~g} \text { bronze }}=277 \mathrm{~g} \mathrm{Cu}$

$>$ A form of energy that is associated with the motion of small particles of matter.
$>$ Heat refers to the quantity of this energy associated with the matter.
> Temperature is how we measure the heat content of matter.

Using percent

A bronze alloy contains 61\% copper and 39% tin. How many grams of copper are needed to make 454 g of bronze?

$$
\text { remember } \quad 61 \% \mathrm{Cu}=\frac{61 \text { units Cu }}{100 \text { units bronze }}
$$

$$
\frac{61 \text { units Cu }}{100 \text { units bronze }}=\frac{61 \mathrm{~g} \mathrm{Cu}}{100 \mathrm{~g} \text { bronze }}
$$

2.6 Temperature Conversions

$$
\measuredangle
$$

To convert between the scales use the following relationships.

$$
\begin{gathered}
{ }^{\circ} \mathrm{F}-32=1.8^{\circ} \times{ }^{\circ} \mathrm{C} \\
\mathrm{~K}={ }^{\circ} \mathrm{C}+273.15
\end{gathered}
$$

It is not uncommon for temperatures in the Canadian planes to reach $-60^{\circ} \mathrm{F}$ and below during the winter. What is this temperature in ${ }^{\circ} \mathrm{C}$ and K ?

$$
\frac{{ }^{\mathrm{o}} \mathrm{~F}-32=}{\frac{1.8}{1.8} 32} \frac{1.8^{\mathrm{o}} \mathrm{x}^{\mathrm{o}} \mathrm{C}}{1.8}={ }_{1} \mathrm{C} 8
$$

$$
\frac{-60-32}{10}=-51^{\circ} \mathrm{C}
$$ 1.8

It is not uncommon for temperatures in the Canadian planes to reach $-60^{\circ} \mathrm{F}$ and below during the winter. What is this temperature in ${ }^{\circ} \mathrm{C}$ and K ?

$$
\begin{gathered}
\mathrm{K}={ }^{\circ} \mathrm{C}+273.15 \\
\mathrm{~K}=-51^{\circ} \mathrm{C}+273.15=222 \mathrm{~K}
\end{gathered}
$$

