1

1.1 What is a Science?

The observation, identification, description, experimental investigation, and theoretical explanation of natural phenomena.

"the study in which humans attempt to organize and explain, in a sytematic and logical manner, knowledge about themselves and their surroundings"

1/25/2012

SCIENTIFIC DISCIPLINES

PHYSICAL SCIENCES: Astronomy, Geology, Physics, Chemistry

BIOLOGICAL SCIENCES: Botany, Zoology

TODAY:

Biochemistry, Molecular Biology

1/25/2012

• Chemistry is sometimes describes as the study of the structure and behavior of matter.

1/25/2012

(CHEMI	STRY	DISCI	PLINE	S

Analytical – what and how much (analysis) General – fundamental laws and concepts Inorganic – substances that are not organic Organic – carbon and hydrogen containing compounds Physical – energy changes in chemical reactions, theoretical

1/25/2012

1/25/2012

<u>1.3 How chemists discover</u> things - The Scientic Method

The observation, identification, description, experimental investigation, and theoretical explanation of natural phenomena.

1/25/2012

SCIENTIFIC METHOD

1.Observation 2.Literature research 3.Hypothesis 4.Experiment 5.Theory Definitions

Hypothesis: A tentative *explanation* of certain facts (observation) that can be tested through experimentation.

1/25/2012

Experiment: is conducting a controlled test to *collect data* to support or negate a hypothesis.

- · Data from experiments are called FACTS
- Experiments must be conducted <u>under carefully</u> <u>controlled conditions</u> so that they can be reproduced over and over. This separates science from pseudo science.

1/25/2012

<u>Theory</u>: a statement <u>which explains</u> what is observed that is supported with experimental evidence and is used to make predictions. (*Mathematical models are frequently derived from a theory. At any time, a new experiment may be done that invalidates the theory.*)

Law: <u>Statement</u> of natural phenomena to which no exceptions are known under the given conditions. A law is <u>not an explanation</u>.

1/25/2012

CH. 1.4 –MEASUREMENT and UNITS

Measurements are the data obtained from an experiment

MEASUREMENT (cont)

What's wrong with this measurement?

55.5

Always include a numerical value and a unit

55.5 km makes more sense!

Measurements used in chemistry

length, volume, mass, time, temperature, pressure, concentration **The Metric System of Units**

Used in scientific work, even in the US

Table 1.1 SI Units (standard metric units)			
Quantity	Symbol	Base Unit	Abbrev
Length	l	meter	m
Mass	т	kilogram	kg
Time	t	second	S
Temp	Т	kelvin	Κ
Amount	п	mole	mol

SI	CHAN		
Prefix	Symbol	Factor	¥
giga-	G	10 ⁹	
mega-	М	10 ⁶	EA E-J
kilo-	k	10 ³	ON GR
BASE UNIT		10 ⁰	
deci-	d	10 ⁻¹	LE
centi-	С	10 ⁻²	SS 1
milli-	m	10 ⁻³	ГНА
micro-	μ	10 ⁻⁶	NO
nano-	n	10 ⁻⁹	NE-
pico-	р	10 ⁻¹²	*

LENGTH (m)

- Meter is both the standard and base metric unit
- Other common length measurement:

 $1 \text{ mm} \rightarrow 10^{-3} \text{ m} \rightarrow 0.001 \text{ m} (1000 \text{ mm} / 1 \text{ m})$ $1 \text{ cm} \rightarrow 10^{-2} \text{ m} \rightarrow 0.01 \text{ m} (100 \text{ cm} / 1 \text{ m})$

 $1 \text{ km} \rightarrow 10^3 \text{ m} \rightarrow 1000 \text{ m} (0.001 \text{ km} / 1 \text{ m})$

Volume

- Combination of base units. (e.g., length × length × length)
- Standard unit is m³
- Base unit is L
- Other common units: cm^3 , dL, mL, μL
- Other facts:

- Mass is the total quantity of matter in something.
- Determined by <u>weight</u> what is weight????
- Standard unit is kg
- Base unit is g
- Other common units μg , mg, kg

Temperature

- A measure of the intensity of heat.
- It does not depend on the size of the system.

Temperature Measurement

- There are three temperature scales: Gelvin, Celsius and Fahrenheit.
- The SI unit of temperature is the Kelvin.
- the laboratory, temperature is • In commonly measured with a thermometer in Celsius.

Degree Symbols Kelvin (absolute) = Kdegrees Celsius = $^{\circ}$ C degrees Fahrenheit = $^{\circ}F$

1.5 Reporting Values from Measurements

Exact and inexact numbers

- Exact numbers are "counting" numbers 7 days per week 12 equals one dozen "there are 32 students in this room"
- Measurements are always inexact

Inexact Numbers (measurements) contain **ERROR**

- Systematic controllable (faulty equipment)
- Random uncontrollable (noise)

Accuracy and Precision

- Accuracy how close a measurement is to the accepted value
- Precision how close a series of measurements are to each other

ACCURATE = CORRECT PRECISE = CONSISTENT

1.	Accurate/precise	A)	B)
2	A compate /immunoice	55.3 kg	54.9 ka
4.	Accurate/imprecise	55.4 kg	54.8 kg
3.	Inaccurate/precise	55.5 kg	55.0 kg
4.	Inaccurate/imprecise	AVC 55 4 h	
		$AVG = 55.4 \ kg$	$AVG = 54.9 \ kg$
		C)	D)
		54.7 kg	54.2 kg
		55.6 kg	54.7 kg
		55.9 kg	55.5 kg
		AVG = 55.4 kg	AVG = 54.8 kg
		· · · · · · · · · · · · · · · · · · ·	

Uncertainty in measurement

- Every measurement has error associated with it.
- The more precise the measurement the less error.
- Error in a measurement is indicated by the number of <u>significant figures</u> in the number

- Which measurement is more precise?
- Which measurement has more significant figures?

Significant Figures

- Indicate precision of a <u>measurement</u>. Sig. figs. do not apply to exact numbers
- Recording Sig Figs
 <u>Sig figs in a measurement include the known</u> digits plus a final estimated digit

Uncertainty in measurements

- Unless otherwise stated the last digit.
- Determined from the smallest division.
- Stated on the device. E.g.: $\pm 1, \pm 0.2$, etc.
- The last digit in a digital display.
- Determined from the data set.

1/25/2012

Counting Sig Figs

• Count all numbers EXCEPT:

Leading zeros -- 0.0025

□ Trailing zeros without a decimal point -- 2,500

Counting Sig	g Fig Examples
1. 23.50	4 sig figs
2. 402	3 sig figs
3. 5,280	3 sig figs
4. 0.080	2 sig figs