CHEM 160 WORKSHEET FOR CHAPTER 14

In the following equation, label each substance as an acid, base, conj. acid or conj. base.
$\mathrm{H}_{2} \mathrm{O}+\mathrm{CN}^{-} \longrightarrow \mathrm{HCN}+\mathrm{OH}^{-}$
acid \qquad base \qquad conjugate acid \qquad conjugate base \qquad
Label each of these as a acid / conjugate base or base/conj. acid or neither.
A) $\mathrm{HCN} / \mathrm{CN}^{-}$
B) $\mathrm{OH}^{-} / \mathrm{H}_{2} \mathrm{O}$
C) $\mathrm{H}^{+} / \mathrm{HCl}$
neither
$\underset{\text { neither }}{\text { D) } \mathrm{OH}^{-} / \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}$
Acid/ conj. base
base/conj. acid

Which of the following acids is considered a strong acid?
A) HF
B) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
C) NaOH

Which of the following reactions is a neutralization reaction?


```
A) \(2 \mathrm{HCl}+\mathrm{Zn} \longrightarrow \mathrm{H}_{2}+\mathrm{ZnCl}_{2}\)
B) \(\mathrm{HNO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaNO}_{3}\)
C) \(\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}\)
D) \(2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}\)
```

What is the molar concentration of hydroxide ion if the concentration of hydronium ion is $2.0 \times 10^{-4} \mathrm{M}$?
A) $2.0 \times 10^{-4} \mathrm{M}$
B) $2.0 \times 10^{-18} \mathrm{M}$
C) $5.0 \times 10^{-11} \mathrm{M}$
D) $2.0 \times 10^{10} \mathrm{M}\left[\mathbf{O H}^{-}\right]=\mathbf{1} \times \mathbf{1 0}^{-14} / \mathbf{2 . 0} \times \mathbf{1 0}^{-4}$

Which of the following solutions is more acidic?
A) $\left[\mathrm{H}^{+}\right]=1 \times 10^{-7}$
B) $\left[\mathrm{H}^{+}\right]=1 \times 10^{-5}$
C) $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7}$
D) $\left[\mathrm{OH}^{-}\right]=1 \times 10^{--}$
convert all to $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Which solution is considered neutral? A) $\mathrm{pH}=3$
B) $\mathrm{pH}=5$ C) $\mathrm{pH}=7$ D) $\mathrm{pH}=9$

What is the pH of a solution that has $\left[\mathrm{H}^{+}\right]=1 \times 10^{-4}$ and $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-10}$?
A) $\mathrm{pH}=4$
B) $\mathrm{pH}=-4$
C) $\mathrm{pH}=10$
D) $\mathrm{pH}=-10$

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left[1 \times 10^{-4}\right]=4
$$

Which of the following is NOT a property of bases?
A) Bases have a slippery feel.
B) Bases have a bitter taste.
C) Bases turn litmus paper blue.
D) Bases dissolve many metals.
E) All of the above are properties of bases.

In the following reaction:

$$
\begin{gathered}
\mathrm{HCO}_{3}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(a q) \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{OH}^{-}(a q) \\
\text { Base }
\end{gathered}
$$

A) $\mathrm{HCO}_{3}{ }^{-}$is an acid and $\mathrm{H}_{2} \mathrm{CO}_{3}$ is its conjugate base. (B) $\mathrm{H}_{2} \mathrm{O}$ is an acid and OH^{-}is its conjugate base.
C) $\mathrm{HCO}_{3}{ }^{-}$is an acid and OH^{-}is its conjugate base.
D) $\mathrm{H}_{2} \mathrm{O}$ is an acid and $\mathrm{H}_{2} \mathrm{CO}_{3}$ is its conjugate base.
E) $\mathrm{H}_{2} \mathrm{O}$ is an acid and $\mathrm{HCO}_{3}-$ is its conjugate base.

What is the conjugate base of HO^{-}? Loses a \boldsymbol{H}^{+}to form it's conjugate base.
A) O^{2-}
B) $\mathrm{H}_{2} \mathrm{O}$
C) NaOH
D) OH^{-}
E) $\mathrm{H}_{3} \mathrm{O}^{+}$

Which of the following pairs is incorrectly matched?

	$\frac{\text { Compound }}{}$		Classification A)
HI Strong acid			
B)	$\mathrm{Ca}(\mathrm{OH})_{2}$	weak base	

Which of the following correctly describes an acidic solution
A. $\mathrm{pOH}=4$
B. $\mathrm{pH}=9 \quad \mathrm{C}$. $\mathrm{H}^{+}=1 \times 10^{-5} \mathrm{M}$
D. $\mathrm{OH}^{-}=1 \times 10^{-5} \mathrm{M}$
E. All describe an acidic solution

If the pH of a solution is 12.5 , then the pOH is
A. 12.5
B. 2.5
C. 1.5
D. -1.5
E. -2.5

$$
p O H=14-p H=14-12.5=1.5
$$

What is the pH of a solution where $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-3}$
A. 0.001
B. 11
C. -3
D. 14
E. 3

$$
p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

A solution is considered neutral if
A. $\mathrm{pH}=\mathrm{pOH}$
B. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
C. $\mathrm{OH}^{-}=1 \times 10^{-7} \mathrm{M}$
D. $\mathrm{pOH}=7$
E. A, B, C, D are all correct

A solution where $\mathrm{OH}^{-}=1 \times 10^{-4}$ has a $\mathrm{H}_{3} \mathrm{O}^{+}$of
A. 1×10^{-4}
B. 1×10^{4}
C. 1×10^{14}

E 10

A 1 M solution of HCl has a \qquad concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$
A) 0 M
B) 0.5 M
C) 1 M
D) 2 M

A solution where $\mathrm{OH}^{-}=1 \times 10^{-5}$ has a pH of
A. -5
B. 5
C. 10
D. 9
E-9

$$
\begin{gathered}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-14} /\left[\mathrm{OH}^{-}\right]=1 \times 10^{-9}} \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=9
\end{gathered}
$$

What is the concentration of the hydroxide ions in a neutral solution?
A) 0.0 M
B) $1.0 \times 10^{-7} \mathrm{M}$
C) $1.0 \times 10^{-1} \mathrm{M}$
D) $>1.0 \times 10^{-7} \mathrm{M}$
E) $<1.0 \times 10^{-7} \mathrm{M}$

Which solution below is the most acidic? The lowest $\boldsymbol{p H}$ is most acidic.
A) $\mathrm{pH}=3.21$
B) $\mathrm{pH}=12.49$
C) $\mathrm{pH}=7.00$
D) $\mathrm{pH}=10.12$
E) $\mathrm{pH}=7.93$

