CHEM 160 WORKSHEET FOR CHAPTER 14

In the following equation, label each substance as an acid, base, conj. acid or conj. base.

	H_2O +	CN ⁻ —	→ HCN	+	OH	
	acid	base	conjugate a	.cid	conjugate base	
Label each of these as a A) HCN / CN ⁻ Acid/ conj. base	acid / conju B) OH ⁻ base/c	<u>gate base</u> or <u>b</u> / H ₂ O onj. acid	oase/conj. acid or <u>n</u> C) H ⁺ / HCl neither	either.	D) OH ⁻ / HC ₂ H ₃ O ₂ neither	
Which of the following a A) HF B)	cids is cons HC ₂ H ₃ O ₂	idered a stron C) NaC	g acid? DH	(D) H	NO ₃	
Which of the following r A) $2HCl + Zn \rightarrow$ (B) $HNO_3 + NaOH$ C) $NaCl + AgNO_3$ D) $2H_2O \rightarrow 2H_2$	eactions is a $H_2 + Z$ $H_2 +$	neutralizatio 2nCl ₂ 0 + NaNO CI + NaNO	n reaction? $\overline{3}_{3}_{3}_{3}_{3}$			
What is the molar concer A) $2.0 \times 10^4 M$ B)	tration of h 2.0 x 10^{-18}	ydroxide ion $(C) 5.0$	$\frac{\text{if the concentration}}{\text{x } 10^{-11} \text{ M}}$ D) 2.	n of hydro 0 x 10 ¹⁰ M	nium ion is $2.0 \times 10^{-4} \text{ M}$ 1 [OH ⁻] = 1 x 10 ⁻¹⁴ /2.	1? 0 x 10 ⁻⁴
Which of the following s A) $[H^+] = 1 \times 10^{-7}$	olutions is r B) $[H^+] = 1$	nore acidic? x 10 ⁻⁵ C) [<i>co</i>	$OH^{-}] = 1 \ge 10^{-7}$ nvert all to $[H_3O^+]$	(D) [OH	$[] = 1 \times 10^{-14}$	
Which solution is consid-	ered neutral	? A) pH = 3	B) pH = 5 <	C) pH =	\overrightarrow{D} D) pH = 9	
What is the pH of a solut (A) $pH = 4$ (B)	ion that has pH = -4	$[H^+] = 1 \times 10$ C) pH =	D^{-4} and $[OH^{-}] = 1 x$ = 10 D) pH	10^{-10} ? H = -10		
		pH = -log	$[H_3O^+] = -log[1 x]$	10 ⁻⁴] = 4		
Which of the following is A) Bases have a slipp B) Bases have a bitter C) Bases turn litmus p D) Bases dissolve man (E) All of the above are	s NOT a pro ery feel. taste. paper blue. ny metals. e properties	operty of base	s?			
In the following reaction	: HCC Bas	$D_{3}^{-}(aq) + H_{2}^{-}$ se ac	$2O(aq) \rightarrow H_2CO_3$ cid conj. A	(aq) + Ol cid co	H- (<i>aq</i>) onj. base	
A) HCO ₃ - is an acid a	and H ₂ CO ₃	is its conjuga	te base.			
(B) H ₂ O is an acid and	OH- is its o	conjugate bas	e.			
C) HCO ₃ - is an acid a	nd OH- is i	ts conjugate b	base.			

D) H₂O is an acid and H₂CO₃ is its conjugate base.

E) H₂O is an acid and HCO₃⁻ is its conjugate base.

What is the conjugate base of HO⁻? Loses a H^+ to form it's conjugate base.

 $\begin{array}{c|c} \hline A & O^{2-} \\ \hline \end{array} B & H_2O \\ \hline \end{array} C & NaOH \\ \hline D & OH^- \\ \hline \end{array} E & H_3O^+ \\ \end{array}$

Which of the following pairs is <i>incorrectly</i> matched?
<u>Compound</u> <u>Classification</u>
A) HI strong acid
C) HNO2 weak acid
D) NH3 weak base
Which of the following correctly describes an acidic solution A.pOH = 4 B. pH = 9 C. H ⁺ = 1 x 10^{-5} M D. OH ⁻ = 1 x 10^{-5} M E. All describe an acidic solution
If the pH of a solution is 12.5, then the pOH is A. 12.5 B. 2.5 C. 1.5 D1.5 E2.5
<i>pOH</i> = <i>14-pH</i> = <i>14-12.5</i> = <i>1.5</i>
What is the pH of a solution where $[\mathbf{H} \mathbf{O}^+] = 1 \times 10^{-3}$
A. 0.001 B. 11 C. -3 D. 14 E. 3
$pH = -log [H_3O^+]$
A solution is considered neutral if A. pH = pOH B. $[H_3O^+] = [OH^-]$ C. OH ⁻ = 1 x 10 ⁻⁷ M D. pOH = 7 (E. A, B, C, D are all correct)
A solution where $OH^{-} = 1 \times 10^{-4}$ has a H_3O^{+} of A. 1×10^{-4} B. 1×10^{4} C. 1×10^{14} D. 1×10^{-10} E 10
A 1 M solution of HCl has a concentration of H_3O^+ A) 0 M B) 0.5 M (C) 1 M D) 2 M
A solution where $OH^{-} = 1 \times 10^{-5}$ has a pH of A5 B. 5 C. 10 D. 9 E -9
$[H_3 O^+] = 1 \times 10^{-14} / [OH^-] = 1 \times 10^{-9}$ pH = -log[H ₃ O ⁺] = 9
What is the concentration of the hydroxide ions in a neutral solution? A) 0.0 M (B) $1.0 \ge 10^{-7}$ M (C) $1.0 \ge 10^{-1}$ M (D) > $1.0 \ge 10^{-7}$ M (E) < $1.0 \ge 10^{-7}$ M
Which solution below is the most acidic? The lowest pH is most acidic.
(A) $pH = 3.21$) B) $pH = 12.49$ C) $pH = 7.00$ D) $pH = 10.12$ E) $pH = 7.93$