THE TOTAL NUMBER OF ORBITALS IN A SHELL $=\mathrm{N}^{2}$

Example:

PRINCIPAL QUANTUM NUMBER (N)	SUBSHELLS	\# OF ORBITALS $\left(\mathrm{N}^{2}\right)$	DISTRIBUTION OF ORBITALS	TOTAL \# OF ELECTRONS $\left(2 \mathrm{~N}^{2}\right)$
1	s	1	one s	2
2	$\mathrm{~s}, \mathrm{p}$	4	one s, three p	8
3	$\mathrm{~s}, \mathrm{p}, \mathrm{d}$	9	one s, three p, five d	18

The Convention center analogy:
Convention center is like the nucleus
Each hotel represents a principal energy level
Each floor represents a sublevel
Each room represents an orbital
Each delegate represents an electron
Lastly there are only two delegates allowed per room
Delegates don't want to room with anyone if there is a room available on the same floor
Delegates don't want to walk up the hill to the hotel

