\qquad

Use the Scantron for Questions 1-13. Mark only one answer unless instructed otherwise.

CHP 6

1. (6.6) What is the mass percent oxygen in the compound NO?
A) $.875 \%$
B) 87.5%
C) 16.00%
D) 46.68%
E) 53.32%
2. (6.6) Methane, CH_{4}, is a molecular compound. Which of the following is the correct value and units of the molar mass of methane?
A. $16.0 \mathrm{~g} / \mathrm{mol}$
B. $16.0 \mathrm{~g} /$ molecule
C. 16.0 amu
D. $16.0 \mathrm{amu} / \mathrm{molecule}$
E. $16.0 \mathrm{~g} / \mathrm{atom}$
3. (6.6) What is the molar mass of sodium phosphate?
A) 226 g
B) 119 g
C) 354 g
D) 308 g
E) 164 g
(6.7) (5 pt) Calculate the mass of silver in a 1.50 g sample of silver sulfide $\left(\mathrm{Ag}_{2} \mathrm{~S}\right.$, molar mass $\left.=247.78 \mathrm{~g}\right)$
(6.8)(2 pt) The simplest or smallest whole number ratio of the atoms in a compound formula is known as the
(6.8) (8 pt) An extremely explosive ionic compound is made from the reactions of silver compounds with ammonia. A sample of this compound is found to contain 17.261 g silver and 0.743 g nitrogen. What is the empirical formula for this compound. Show all work for complete credit.
(6.8) (4 pt) What is the molecular formula of a compound with empirical formula SNCl_{2} and molecular formula mass $=351 \mathrm{amu}$?

CHP 7

Use the following answers to fill in the blanks in Questions 4-7.
A) Changed
B) Created
C) Coefficients
D) Subscript
E) There is no answer.
4. When balancing equations we do not change the \qquad in the formulas.
5. The purpose of the \qquad placed in front of formulas is to make the number of atoms on the reactant side equal to the number of atoms on the product side.
6. In a chemical reaction atoms are neither created nor destroyed they merely \qquad partners.
7. When the product of a reaction is \qquad it is called a precipitate.
$(7.1 \& 7.3)(6 \mathrm{pt})$ Balance and name the type of this chemical reaction.

$$
\ldots \mathrm{HClO}_{3 \text { (aq) }}+\ldots \mathrm{MgSO}_{3 \text { (aq) }} \rightarrow \ldots \mathrm{H}_{2} \mathrm{SO}_{3 \text { (aq) }}+\ldots \mathrm{Mg}^{+}\left(\mathrm{ClO}_{3}\right)_{2 \text { (aq) }}
$$

Name \qquad
(7.1 \& 7.3) (8 pt) Complete and balance each of the following reactions. Hint: Predict if a precipitate will form. If there is no reaction write $\boldsymbol{N R}$.
\qquad $\mathrm{KI}(\mathrm{aq})+\ldots \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow$
$\xrightarrow{_} \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\ldots _\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow$

CHP 9

8. (9.1) When an atom loses an electron, the resulting particle is
A) oxidized
B) reduced
C) neutral
D) negatively charged
E) positively charged
9. (9.1) Identify the oxidation-reduction reactions among the following:
10. $\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
11. $\quad 2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{s})$
12. $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}$
A) 1 and 2 only
B) 1 and 3 only
C) 2 and 3 only
D) All of 1, 2, and 3
E) None of 1,2 , and 3
13. (9.2) The oxidation numbers of Mg and O in MgO are:
A) 0,0
B) $+2,-2$
C) $+2,0$
D) $0,-2$
14. (9.2) In the following reaction, $\mathrm{Zn}(\mathrm{s})+\mathrm{CuSO} 4(a q) \rightarrow \mathrm{ZnSO} 4(a q)+\mathrm{Cu}(\mathrm{s})$
A) Zn is oxidized and Cu^{2+} is reduced.
B) CuSO_{4} is oxidized and Zn is reduced.
C) ZnSO_{4} is oxidized and Cu is reduced.
D) Cu^{2+} is oxidized and Zn^{2+} is reduced.

Solid calcium reacts with oxygen gas, forming solid calcium oxide.

(9.3) (6 pt) Write the balanced equation for this reaction.
(9.3) (2 pt) What is the name of this reaction? \qquad
(9.3) (6 pt) When potassium chlorate is heated it produces oxygen and potassium chloride. Write the balanced equation for this reaction.
(2 pt) What is the name of this reaction?
(9.3) (7 pt) Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ is used for heating and cooking in some homes. Write the balanced equation for the combustion of propane.

CHP 10

12. (10.1) For the reaction $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ How much water is produced when 2.5 moles of hydrogen react completely?
a. 2.5 grams
b. 18.0 grams
c. 2.0 moles
d. 2.5 moles
13. (10.1) For the following reaction: $\mathrm{Mg}_{3} \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{3}$

When 2 moles of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ are allowed to react, how many moles of $\mathrm{H}_{2} \mathrm{O}$ also react?
A) 4 moles
B) 6 moles
C) 8 moles
D) 1 mole
E) 12 moles
$(2 \mathrm{pt})$ The amount of product that a calculation indicates as possible for a chemical reaction is known as the

Show all work for full credit in answering questions. Answers must contain correct significant figures for full credit.
(10.2) (7 pt) Using the following equation, if 62.5 grams of hydrogen peroxide produce 0.550 mol of oxygen what is the percent yield?.

| $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})$ | $\rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ | + | $\mathrm{O}_{2}(\mathrm{~g})$ |
| :--- | :--- | :--- | :--- | :--- |
| Molar mass | $\mathrm{H}_{2} \mathrm{O}_{2}: 34.02 \mathrm{~g}$ | $\mathrm{H}_{2} \mathrm{O}: 18.02 \mathrm{~g}$ | $\mathrm{O}_{2: 3} 32.00 \mathrm{~g}$ |

$(10.2 \& 10.3)(10 \mathrm{pt})$ Calculate the grams of aluminum hydroxide obtained from reaction between 105 g sodium hydroxide and 205 g aluminum nitrate according to the following balanced equation:

$$
\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3(\mathrm{aq})}+3 \mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{Al}(\mathrm{OH})_{3(\mathrm{~s})}+3 \mathrm{NaNO}_{3(\mathrm{aq})}
$$

Molar masses:	213.01 g	40.07 g	78.00 g	85.00 g

(2 pt) Which reactant is the limiting reactant?
$(4 \mathrm{pt})$ How many grams of excess reactant will there be?

The following data was obtained from titration of 0.523 g KHP acid with a NaOH solution. Complete the following calculations to determine the molar concentration of the NaOH solution given the following data. The neutralization reaction is $\mathrm{NaOH}+\mathrm{KHP} \rightarrow \mathrm{KNaP}+\mathrm{H}_{2} \mathrm{O}$. Molar masses are $\mathrm{NaOH}=40.00 \mathrm{~g}$ and $\mathrm{KHP}=$ 204.22 g

	TRIAL 1
Initial NaOH level in buret	0.00 mL
Final NaOH level in buret (End point)	20.55 mL
(2 pt) Volume (mL) of NaOH used (Show calculation)	
(2 pt) Volume in Liters of NaOH used (Show calculation)	

(4 pt) Moles of KHP used in titration \qquad mole KHP (Show calculation)
(2 pt) Moles of NaOH used in titration \qquad mole NaOH (Show calculation)
(6 pt) Molarity of NaOH solution \qquad M NaOH

PERIODIC CHART OF THE ELEMENTS

* Lanthanide Series

		Nd		62 17	E3	$G d$		Dy	HO			\mathbf{Y}	LU
140.12	140.907	144.24	(147)	150.35	151.96	157.25	158.924	162.50	164.930	167.26		173.04	

\neq Actinide Series

