$\qquad$

## Answer each multiple choice by marking only one answer on your scantron unless the question states that there is more than one correct answer. Each multiple choice question is worth 2 pt.

CHP 4 (37 pt)
$(6 \mathrm{pt})$ Calculate the number of food calories $(\mathrm{Cal})$ in a cup of rice that has 2850 kJ of energy $(4.184 \mathrm{~J}=1 \mathrm{cal})$.

The Law of Conservation of Energy states that energy can be neither

1. $\qquad$ nor
2. $\qquad$ but it can be
3. $\qquad$ from one system to another and
4. $\qquad$ from one form to another.

Answers for Questions 1-4
A) Changed
B) Destroyed
C) Transferred
D) Collected
E) Created
5. Which of the following statements about the colors emitted by elements put into a flame is/are correct?
i. The different colors are evidence that the protons in the atoms are changing energy states.
ii. The different colors are evidence that electron energies ARE NOT restricted to certain values.
iii. Light energy is emitted from atoms as electrons move from higher energy levels to lower energy levels.
iv. Neutral atoms in the ground state emit light spontaneously.
A) i and ii
B) i and iii
C) ii \& iii
D) iii only
E) iv only
6. Which of the following shell/subshell designations is not allowed?
A) 4 s
B) 1 s
C) $1 p$
D) 2 s
E) $2 p$
7. For the following orbitals, $1 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{p}, 3 \mathrm{~s}$ and 3 p , which of the following is most likely the 3 s ?
A) $\bigcirc$
B)

C)

D) $\bigcirc$
E)

8. Which of the following has the highest energy (use your Aufbau diagram)?
A) 3 s
B) $3 p$
C) 3 d
D) 4 s
9. Indicate which of these electron configurations represent elements with similar chemical properties (Mark two
answers on your scantron).
A) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{1}$
B) $1 s^{2} 2 s^{2}$
C) $1 s^{2} 2 s^{2} 2 p^{1}$
D) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
E) $1 s^{2} 2 s^{2} 2 p^{2}$
10. Which group is the $n s^{2} n p^{2}$ group?
A) 2 A
B) 3 A
C) 4 A
D) 5 A
E) 6 A
11. Which of the following IS NOT correct?
A) All the subshells (all the s, p, d's, etc) in a shell (principal energy level) have the same energy.
B) A d subshell always contains five orbitals.
C) An s orbital has a spherical shape.
D) All orbitals can hold a maximum of 2 electrons.
(9 pt) Write the electron configuration for manganese $\qquad$
Draw the energy orbital diagram for manganese. For example Be is


CHP 5 (46 pt)
12. On the basis of formula which of these is an element?
A) $\mathrm{H}_{2}$
B) CO
C) $\mathrm{H}_{2} \mathrm{O}$
D) $\mathrm{NH}_{3}$
13. Which of these elements has the the most valence electrons:
A) H
B) C
C) Na
D) Al
E) Ne
14. Which of the following elements will form an anion?
A) H
B) K
C) Na
D) He
E) Ar
15. Which of the following is isoelectronic (same electron configuration) with Ar?
(Mark your scantron for all that apply)
A) $\mathrm{Na}^{+}$
B) $\mathrm{Cl}^{-}$
C) $\mathrm{O}^{2-}$
D) $\mathrm{Br}^{-}$
E) $P^{3-}$
16. How many bonding pairs/lone pairs are their in the following Lewis structure?
(A) $2 / 2$
B) $2 / 4$
C) $4 / 4$
D) $4 / 8$
E) $8 / 8$

17. Which of the following bonds has the dipole shown correctly?
A) $\xrightarrow[\mathrm{N}-\mathrm{C}]{\longrightarrow}$
B) $\xrightarrow[\mathrm{O}-\mathrm{H}]{ }$
C) $\xrightarrow[\mathrm{H}-\mathrm{Br}]{\longrightarrow}$
D) $\mathrm{Cl}-\mathrm{Cl}$
18. The H-O bond is considered a
A) non-polar covalent bond
B) polar covalent bond
C) ionic bond
19. What is the normally expected bonding pattern for the element shown?
A) $-\stackrel{\#}{\mathrm{O}}-$
B) $-\stackrel{\square}{\mathbf{N}}-$
C) $-\ddot{\mathrm{C}}-$
D) $-\stackrel{\ddot{C l}}{\square}-$
20. Which of the following statements is correct?
A) Metal elements have greater electronegativity than non-metal elements.
B) Electronegativity decreases from top to bottom in a group in the periodic table.
C) Electronegativity increases from top to bottom in a group in the periodic table.
D) Electronegativity decreases from left to right across a period in the periodic table.
21. All of these molecules have tetrahedral molecular geometry. Which one is a polar molecule?
A) $\mathrm{CH}_{3} \mathrm{I}$
B) $\mathrm{CH}_{4}$
C) $\mathrm{CH}_{3} \mathrm{Cl}$
D) $\mathrm{CCl}_{4}$
E) more than one is polar.
(10 pt) Draw the Lewis structure for $\mathrm{SO}_{2}{ }^{2-}$
(16 pt) For each of the following molecules write the names of the shapes (geometries) and bond angles around the central atom.

| STRUCTURE | ELECTRON GROUP <br> GEOMETRY (name) | BOND <br> ANGLE | MOLECULAR GEOMETRY <br> (name) | POLAR (P) or <br> NON-POLAR (NP) |
| :---: | :---: | :--- | :--- | :--- |
| $: \mathrm{N} \equiv \mathrm{N}-\ddot{\mathrm{O}}:$ |  |  |  |  |
| $: \ddot{\mathrm{F}}-\ddot{\mathrm{N}}-\ddot{\mathrm{F}}:$ |  |  |  |  |
| $\mathrm{I} .:$ |  |  |  |  |
| $: . \mathrm{F}:$ |  |  |  |  |

CHP 6 (38 pt)
(10 pt) Draw a diagram using Lewis dot symbols showing the formation of the cation and anion and write the formula of the resulting ionic compound from the elements Ba and Cl .

22. Which of the following formulas represents a covalent compound? (Mark your scantron for all that apply)
A) NO
B) No
C) $\mathrm{NH}_{4}{ }^{+}$
D) $\mathrm{ClO}_{2}$
E) $\mathrm{Mg}(\mathrm{OH})_{2}$
23. Which of the following are ionic compounds? (Mark your scantron for all that apply)
A) $\mathrm{H}_{2} \mathrm{O}$
B) $\mathrm{Li}_{2} \mathrm{O}$
C) $\mathrm{F}_{2} \mathrm{O}$
D) $\mathrm{NH}_{3}$
E) MgS
24. A) TRUE $\quad$ B) FALSE ALL formulas that begin with " H " are acids.

25 . Which of the following is a STRONG acid?
A) HCl
B) $\mathrm{HNO}_{2}$
C) $\mathrm{H}_{2} \mathrm{CO}_{3}$
D) $\mathrm{H}_{2} \mathrm{SO}_{3}$
(10 pt) Complete the table with names

| $\mathrm{SO}_{3}$ (a common air pollutant from oil refineries) |  |
| :--- | :--- |
| $\mathrm{NH}_{3}$ |  |
| KCl (in salt substitute) |  |
| $\mathrm{SnF}_{2}$ (the fluoride in toothpaste) |  |
| $\mathrm{Mg}(\mathrm{OH})_{2}$ (in milk of magnesia) |  |
| $\mathrm{NaHCO}_{3}$ (in baking soda) |  |
| $\mathrm{Zn}\left(\mathrm{ClO}_{3}\right)_{2}$ |  |
| $\mathrm{BaSO}_{4}$ (used medically for GI X-rays) |  |
| $\mathrm{HNO}_{3}$ |  |
| HCl (swimming pool acid) |  |

(10 pt) Complete the following table with formulas

| phosphorus trichloride |  |
| :--- | :--- |
| nitrogen monoxide |  |
| silver sulfide (the tarnish on silver) |  |
| iron(II) chloride |  |
| potassium permanganate |  |
| sodium hypochlorite (in bleach) |  |
| calcium carbonate (marble and chalk) |  |
| ammonium acetate |  |
| phosphoric acid (in navel jelly and Coke) |  |
| acetic acid (in vinegar) |  |

## PERIODIC CHART OF THE ELEMENTS



\section*{* Lanthanide Series <br>  <br> $\neq$ Actinide Series <br> |  |  | 92 | 93 | 94 | 95 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | , | Np | Pu |  |  | BK |  | ES |  | Md | No |  |
| 32.03 | (231) | 238.0 | (237) | [242] | (243) | (24 | (247) | (249) | (254) | (253) | (256] | (256] | L25 |

Electronegativity Chart of the Elements

| $\begin{array}{r} \hline \mathrm{H} \\ 2.1 \end{array}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} \mathrm{H} \\ 2.1 \end{gathered}$ | He |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Li | Be |  |  |  |  |  |  |  |  |  | C | N |  | F | Ne |
| 1.0 | 1.5 |  |  |  |  |  |  |  |  |  | 2.5 | 3.0 |  | 4.0 | -- |
| Na | Mg |  |  |  |  |  |  |  |  |  | Si | P |  | Cl | Ar |
| 0.9 | 1.2 |  |  |  |  |  |  |  |  |  | 1.8 | 2.1 |  | 3.0 | -- |
| K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co |  | Cu | Ge | As |  | Br | Kr |
| 0.8 | 1.0 | 1.3 | 1.5 | 1.6 | 1.6 | 1.5 | 1.8 | 1.8 |  | 1.9 | 1.8 | 2.0 |  | 2.8 | -- |
| Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh |  | Ag | Sn | Sb |  | I | Xe |
| 0.8 | 1.0 | 1.3 | 1.4 | 1.6 | 1.8 | 1.9 | 2.2 | 2.2 |  | 1.9 | 1.8 | 1.9 |  | 2.5 | -- |
| Cs | Ba | La* | Hf | Ta | W | Re | Os | Ir |  | Au | Pb | Bi |  | At | Rn |
| 0.7 | 0.9 | 1.1 | 1.3 | 1.5 | 1.7 | 1.9 | 2.2 | 2.2 |  | 2.4 | 1.8 | 1.9 |  | 2.2 | -- |
| $\begin{gathered} \hline \mathrm{Fr} \\ 0.7 \end{gathered}$ | $\begin{aligned} & \hline \mathrm{Ra} \\ & 0.9 \end{aligned}$ | $\begin{gathered} \hline \text { Ac } \dagger \\ 1.1 \end{gathered}$ | Rf | Db | Sg | Bh | Hs | Mt |  | $\ddagger$ | * Lanthanide Series <br> $\dagger$ Actinide Series |  |  |  |  |

$\ddagger$ IUAPC has not yet named these elements.

