Ch # 14 Acids, Bases and Salts

Acid Properties

- sour taste
- change the color of litmus from blue to red.
- react with
- -metals such as zinc and magnesium to produce hydrogen gas

Base Properties

- · •bitter or caustic taste
- •a slippery, soapy feeling.
- · •the ability to change litmus red to blue
- · •the ability to interact with acids

Arrhenius theory

- An Arrhenius acid "is a hydrogen-containing substance that dissociates to produce hydrogen ions."
- An Arrhenius base is a hydroxide-containing substance that dissociates to produce hydroxide ions in aqueous solution.
- An **Arrhenius acid** solution contains an excess of H+ ions.
- An **Arrhenius base** solution contains an excess of OH- ions.

Ionization/Dissociation.

- *Ionization*: A process in which ions are produced from a molecular compound when dissolved in a solvent.
- **Dissociation**: A process in which already existing ions in an ionic compound separate when an ionic compound is dissolved in a solvent.

Bronsted Lowry Acid Base theory:

- A Bronsted-Lowry acid is a proton (H+) donor.
- A Bronsted-Lowry base is a proton (H+) acceptor.
- · Conjugate acid-base pairs differ by a proton.
- When an acid donates a proton it becomes the **conjugate base**.
- When a base accepts a proton it becomes the **conjugate acid.**
- Hydronium ion: H3O +

Name*	Molecular Formula	Molecular Structure	
Nitric acid	HNO3	H—O—N—O ∥ O	
Sulfuric acid	H_2SO_4	0	
		H—O—S—O—H O	
Perchloric acid	HCIO ₄	0 	
Chloric acid	HClO ₃	0 H—O—CI—O 0	
Hydrochloric acid	HCl	H—Cl	
Hydrobromic acid	HBr	H—Br	
Hydroiodic acid	HI	н—і	

Ionic and Net ionic Equations:

- In the un-ionized equation all compounds are written using their molecular or formula expressions.
- In the total ionic equation all ions present in solution are written.
- In the net ionic equation only the ions that react are written.
- lons that do not participate in a chemical reaction are called spectator ions.

Rules for Writing Equations

- 1.Strong electrolytes in solution are written in their ionic form.
- 2.Weak electrolytes are written in their molecular (unionized) form.
- 3.Nonelectrolytes are written in their molecular form.
- 4.Insoluble substances, precipitates and gases are written in their molecular forms.
- 5.The net ionic equation should include only substances that have undergone a chemical change. Spectator ions are omitted from the net ionic equation.
- 6.Equations must be balanced both in atoms and in electrical charge.

Reaction of acids:

- Acids react with metals to produce hydrogen and an ionic compound (salt).
- Reaction with Bases : The reaction of an acid with a base is called a neutralization reaction. In an aqueous solution the products are a salt and water
- Acids react with carbonates and bicarbonates to produce CO2, salt, and water.

Reactions of Bases

• Reaction with Acids The reaction of an acid with a base is called a neutralization reaction. In an aqueous solution the products are a salt and water:

Reaction with salts:

Reaction with metals: Single replacement reaction according to activity series.

- Reaction with acids: Double displacement reaction. A new weaker acid, new insoluble salt, gaseous compound is one of the products.
- Reaction with bases: Insoluble precipitate forms, or weaker base.
- Reaction of salts with each other: Double displacement reaction. Insoluble salt is formed.

Self ionization of water:

- Ion product constant for water:
- 1.00 x 10-14
- [H3O+] [OH-] = 1.00 x 10-14
- [H3O+]= 7.50 x 10-5 What is the [OH-] in this solution?

Problems

- Calculate pH for the following:
- [H3O+]=1 X 10-3
- [H3O+]=1 X 10-9
- [OH-]= 1X 10-4
 5) [H3O+]=3.9 X 10-5
 6) [H3O+]=7.9 X 10-11
- The number of decimal places of a logarithm is equal to the number of significant figures in the original number.

Problem

7) The pH of a solution is 5.70. What is the molar hydronium ion concentration for this solution?

• S.B-S.A neutral

Conjugate acid-base pair
$CN^- + H_2O \longrightarrow HCN + OH^-$
ProtonProtonWeakMakesacceptor donoracidsolution basic
Conjugate acid–base pair
$F^- + H_2O \longrightarrow HF + OH^-$
Proton Proton Weak Makes
acceptor donor acid solution basic

Buffers:
 A solution that resists major changes in pH when small amounts of acid or base is added to it. 1) A substance to react with and remove added base.
 2) A substance to react with and remove added acid. 3) weak acid-conjugate base.

Acid-Base titrations:

- An acid/base of known concentration is exactly reacted with a measured volume of a base/acid of unknown concentration.
- Acid + base _____ salt + water.
- Indicator: A compound that exhibits different colors depending on the pH.
- 8) In an acid-base titration , 32.7 mL of 0.100 M KOH is required to neutralize completely 50.0 mL of H3PO4 . Calculate the molarity of the H3PO4 solution.