Ch \# 14

Acids, Bases and Salts

Base Properties

- -bitter or caustic taste
- -a slippery, soapy feeling.
- t the ability to change litmus red to blue
- •the ability to interact with acids

Ionization/Dissociation.

- Ionization: A process in which ions are produced from a molecular compound when dissolved in a solvent.
- Dissociation: A process in which already existing ions in an ionic compound separate when an ionic compound is dissolved in a solvent.

Acid Properties

- sour taste
- change the color of litmus from blue to red.
- react with
- -metals such as zinc and magnesium to produce hydrogen gas

Arrhenius theory

- An Arrhenius acid "is a hydrogen-containing substance that dissociates to produce hydrogen ions."
- An Arrhenius base is a hydroxide-containing substance that dissociates to produce hydroxide ions in aqueous solution.
- An Arrhenius acid solution contains an excess of $\mathrm{H}+$ ions.
- An Arrhenius base solution contains an excess of OH - ions.

Bronsted Lowry Acid Base theory:

- A Bronsted-Lowry acid is a proton $\left(\mathrm{H}_{+}\right)$donor.
- A Bronsted-Lowry base is a proton $\left(\mathrm{H}_{+}\right)$ acceptor.
- Conjugate acid-base pairs differ by a proton.
- When an acid donates a proton it becomes the conjugate base.
- When a base accepts a proton it becomes the conjugate acid.
- Hydronium ion: H3O +

Coniugate Acids and Bases.

- Conjugate Acids and Bases.
- Determine the conjugate acid -base pairs in the following equations;
- $\mathrm{HBr}(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H} 3 \mathrm{O}+(\mathrm{aq})+\mathrm{Br}-(\mathrm{aq})$
- $\mathrm{HCN}(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H} 3 \mathrm{O}+(\mathrm{aq})+\mathrm{CN}-(\mathrm{aq})$
- Write the conjugate bases for: a) HCO 3
- b) $\mathrm{HSO} 4-$
- Write the conjugate acids for: a) PO43-
b) HPO42-

Mono, Di, Triprotic acids:

- Monoprotic acid: Acid that can transfer only one H+ ion per molecule during an acid-base titration.
- Diprotic: Acid that can transfer two $\mathrm{H}+$ ions per molecule during an acid-base titration.
- Triprotic: Acid that can transfer three $\mathrm{H}+$ ions per molecule during an acid-base titration.
- Polyprotic: Acid that can transfer two or more H+ ions per molecule during an acid-base titration.
- Acidic Hydrogen atom: A H atom in an acid molecule that can be transferred to a base during an acid base reaction.
- Strong acid/Weak acid: Table 555.

Name ${ }^{\text {* }}$	Molecular Formula	Molecular Structure
Nitric acid	HNO_{3}	
Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	
Perchloric acid	HClO_{4}	
Chloric acid	HClO_{3}	
Hydrochloric acid	HCl	$\mathrm{H}-\mathrm{Cl}$
Hydrobromic acid	HBr	$\mathrm{H}-\mathrm{Br}$
Hydroiodic acid	HI	$\mathrm{H}-\mathrm{I}$

Salts

- A salt is an ionic compound containing a metal ion or polyatomic ion as the ion and a nonmetal ion or polyatomic ion (except OH-) as -ve ion.

Ionic and Net ionic Equations:

- In the un-ionized equation all compounds are written using their molecular or formula expressions.
- In the total ionic equation all ions present in solution are written.
- In the net ionic equation only the ions that react are written.
- Ions that do not participate in a chemical reaction are called spectator ions.

Rules for Writing Equations

- 1.Strong electrolytes in solution are written in their ionic form.
- 2.Weak electrolytes are written in their molecular (unionized) form.
- 3.Nonelectrolytes are written in their molecular form.
- 4. Insoluble substances, precipitates and gases are written in their molecular forms.
- 5.The net ionic equation should include only substances that have undergone a chemical change. Spectator ions are omitted from the net ionic equation.
- 6 .Equations must be balanced both in atoms and in electrical charge.

Reaction of acids:

- Acids react with metals to produce hydrogen and an ionic compound (salt).
- Reaction with Bases : The reaction of an acid with a base is called a neutralization reaction. In an aqueous solution the products are a salt and water
- Acids react with carbonates and bicarbonates to produce CO 2 , salt , and water.

Reactions of Bases

- Reaction with Acids The reaction of an acid with a base is called a neutralization reaction. In an aqueous solution the products are a salt and water:

Reaction with salts:

Reaction with metals: Single replacement reaction according to activity series.

- Reaction with acids: Double displacement reaction. A new weaker acid, new insoluble salt, gaseous compound is one of the products.
- Reaction with bases: Insoluble precipitate forms, or weaker base.
- Reaction of salts with each other: Double displacement reaction. Insoluble salt is formed.

pH

- Acidic solution: $[\mathrm{H} 3 \mathrm{O}+]>[\mathrm{OH}-] \mathrm{pH}=0-6$
- Basic solution: $[\mathrm{H} 3 \mathrm{O}+]<[\mathrm{OH}-] \mathrm{pH}=8-14$
- Neutral solution: [H3O+]= [OH-] pH =7
- pH scale: Scale that is used to specify molar hydronium ion concentration in an aqueous solution.
- $\mathrm{pH}=-\log [\mathrm{H} 3 \mathrm{O}+]=-\log [\mathrm{H}+]$

Problems

- Calculate pH for the following:
- $\quad[\mathrm{H} 3 \mathrm{O}+]=1 \times 10-3$
- $\quad[\mathrm{H} 3 \mathrm{O}+]=1 \times 10-9$
- $[\mathrm{OH}-]=1 \mathrm{X} 10-4$

5) $[\mathrm{H} 3 \mathrm{O}+]=3.9 \times 10-5$
6) $[\mathrm{H} 3 \mathrm{O}+]=7.9 \times 10-11$

- The number of decimal places of a logarithm is equal to the number of significant figures in the original number.

Problem

7) The pH of a solution is 5.70 . What is the molar hydronium ion concentration for this solution?

Hydrolysis of a salt

- Reaction of substance with water to produce hydronium ion or hydroxide ion or both.
- Type of salt Nature
- W.B-S.A Acidic
- S.B-W.A Basic
- W.B-W.A depends on the salt
- S.B-S.A neutral

Conjugate acid-base pair

Conjugate acid-base pair
$\underset{\text { F }}{\mathrm{F}^{-}}+\underset{\text { Proton }}{\mathrm{H}_{2} \mathrm{O} \longrightarrow} \underset{\text { Weak Makes }}{\mathrm{HF}}+\mathrm{OH}^{-}$ $\begin{array}{lll}\text { Proton Proton } & \text { Weak } & \text { Makes } \\ \text { acceptor donor } & \text { acid } & \text { solution basic }\end{array}$

Buffers:

- A solution that resists major changes in pH when small amounts of acid or base is added to it.

1) A substance to react with and remove added base.

- 2) A substance to react with and remove added acid.
- 3) weak acid-conjugate base.

Acid-Base titrations:

- An acid/base of known concentration is exactly reacted with a measured volume of a base/acid of unknown concentration.
- Acid + base \qquad salt + water.
- Indicator: A compound that exhibits different colors depending on the pH .

8) In an acid-base titration , 32.7 mL of 0.100 M KOH is required to neutralize completely 50.0 mL of H3PO4. Calculate the molarity of the H3PO4 solution.
