

Unit	Average Air Pressure at Sea Level	
pascal (Pa)	101,325 101.325 1 (exactly)	
kilopascal (kPa)		
atmosphere (atm)		
millimeters of mercury (mm Hg)	760 (exactly)	
inches of mercury (in Hg)	29.92	
torr (torr)	760 (exactly) 14.7	
pounds per square inch (psi, lbs./in ²)		

Atmospheric Pressure & AltitudeThe higher up in the atmosphere, the lower the atmospheric pressure.

- ➤ at sea level atmospheric pressure is 14.7 psi
- ≻at 10,000 ft it is only 10.0 psi

Tro's Introductory Chemistry, Chapter

20

Boyle's Law & Breathing (demo)

- inhale
 - ✓ diaphragm & rib muscles contract
 - ✓ chest cavity expands volume increase
 - ✓ pressure inside lungs drops below air pressure
 - ✓ air flows into lung to equilibrate pressure > gases move from hi pressure to low
- exhale
 - ✓ diaphragm & rib muscles relax
 - ✓ chest cavity volume decreases
 - ✓ pressure inside lungs rises above air pressure
 - \checkmark air flows out of lung to equilibrate pressure
- normal healthy person can generate a lung pressure of 1.06 atm

Tro's Introductory Chemistry, Chapter

19

Depth = 0 m

21

Boyle's Law and Diving In water, for each 10 myou dive below the surface the pressure on your lungs increases 1 atm At 20 m the total pressure is 3 atm If your tank contained air at 1 atm pressure you would not be able to inhale

Tro's Introductory Chemistry, Ch

it into your lungs

Boyle's Law and Diving

- scuba tanks have a regulator so that the air in the tank is delivered at the same pressure as the water surrounding you
- if a diver holds her breath and rises quickly, so that the outside pressure drops to 1 atm; according to Boyle's Law, what should happen to the volume of air in the lungs?

Tro's Introductory Chemistry, Chapter

11.5 Pressure, Volume and Temperature

- For a balloon the pressure outside and inside is the same (constant pressure):
 - ✓ Decreasing the temperature causes the balloon to decrease its volume.
 - ✓ Raising the temperature causes the balloon to increase its the volume

Example 11.3: Charles' Law

Example:

• A sample of gas has a volume of 2.80 L at an unknown temperature. When the sample is submerged in ice water at 0°C, its volume decreases to 2.57 L. What was the initial temperature in kelvin and in celsius? (assume constant pressure)

Example 11.4: The Combined Gas Law

Example 1:

• A sample of gas has an initial volume of 158 mL at a pressure of 735 mmHg and a temperature of 34°C. If the gas is compressed to a volume of 108 mL and heated to 85°C, what is the final pressure in mmHg?

Example 2:

• A sample of gas has an initial volume of 158 mL at a pressure of 735 mmHg and a temperature of 34°C. What will be its volume at STP?

Example:

• A 4.8 L sample of helium gas contains 0.22 mol helium. How many additional moles of helium must be added to obtain a volume of 6.4 L? (assume constant pressure and temperature)

Tro's Introductory Chemistry, Chapter

41

37

11.8 Ideal Gas Law

- By combing the gas laws we can write a general equation
- R is called the Gas Constant
- the value of **R** depends on the units of P and V \checkmark we will use $0.0821 \frac{atm \bullet L}{mol \bullet K}$ and convert P to atm and V to L
- use the Ideal Gas law when have a gas at one condition, use the Combined Gas Law when you have gas whose condition is changing

$$\underbrace{\textcircled{0}}_{(0)} \underbrace{\textcircled{0}}_{(1)} \underbrace{\textcircled{0}}_{(1)} = R \quad \text{or} \quad PV = nRT$$
To's Introductory Chemistry. Chapter

Example 11.7: The Ideal Gas Law Requiring Unit Conversion

Example:

• Calculate the number of moles of gas in a basketball inflated to a total pressure of 24.2 psi with a volume of 3.2 L at 25°C

Molar Mass of a Gas

• one of the methods chemists use to determine the molar mass of an unknown substance is to heat a weighed sample until it becomes a gas, measure the temperature, pressure and volume, and use the Ideal Gas Law

Molar Mass = $\frac{\text{mass in grams}}{\text{moles}}$

Tro's Introductory Chemistry, Chapter

Example 11.8: Molar Mass Using The Ideal Gas Law and a Mass Measurement

Example:

• A sample of a gas has a mass of 0.311 g. Its volume is 0.225 L at a temperature of 55°C and a pressure of 886 mmHg. Find its molar mass.

Tro's Introductory Chemistry, Chapter

47

45

Tro's Introductory Chemistry, Chapter

•	According to a gas behave Air is a mixt Also, we car independent ✓ though all temperature ➤ all gases	b Kinetic M independe ure, yet we think of e of the othe gases in the r	e can treat it as a sin ach gas in the mixtu r gases nixture have the same upy the container, so all gas	ne particles i gle gas ure volume and	
	Gas	% in Air, by volume	Gas	% in Air, by volume	
	nitrogen, N ₂	78	argon, Ar	78	
	oxygen, O ₂	21	carbon dioxide, CO2	21	

11.10 Reactions Involving Gases

- the principles of reaction stoichiometry from Chapter 8 can be combined with the Gas Laws for reactions involving gases
- in reactions of gases, the amount of a gas is often given as a Volume

✓ instead of moles

- \checkmark as we've seen, must state pressure and temperature
- the Ideal Gas Law allows us to convert from the volume of the gas to moles; then we can use the coefficients in the equation as a mole ratio

Tro's Introductory Chemistry, Chapter

59

Example 11.11: Gases in Chemical Reactions Example:

• How many liters of oxygen gas form when 294 g of $KClO_3$ completely reacts in the following reaction? Assume the oxygen gas is collected at P = 755 mmHg and T = 308 K

 $2 \operatorname{KClO}_3(s) \xrightarrow{\Delta} 2 \operatorname{KCl}(s) + 3 \operatorname{O}_2(g)$

Tro's Introductory Chemistry, Chapter

61

Example 11.12: Using Molar Volume in Calculations

Example: • How many grams of water will form when 1.24 L of H₂ at STP completely reacts with O₂? $2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$ To \sigma Introductory Chemistry, Chapter 65