

Chapter 6 Chemical Composition

Roy Kennedy
Massachusetts Bay Community College Wellesley Hills, MA

2006, Prentice Hall

6.2 Counting Nails by the Pound

A hardware store customer buys 2.60 pounds of nails. How many nails did the customer buy?

A dozen of the nails has a mass of 0.150 pounds.

6.3 \& 6.4 Counting Atoms and Molecules by the Gram

By analogy we can calculate how many atoms or molecules there are in a given mass of an element or compound.

6.1 How Much Sodium?

Counting Nails by the Pound

$\frac{1 \text { doz nails }}{0.150 \mathrm{lb} \text { nails }} \quad \frac{12 \text { nails }}{\text { doz nails }}$
$2.60 \mathrm{lbs} . \times \frac{1 \text { doz. nails }}{0.150 \mathrm{lbs} .} \times \frac{12 \text { nails }}{1 \text { doz. }}=208$ nails

- The customer bought 2.60 lbs of nails and received 208 nails. He counted the nails by weighing them!

$$
\begin{aligned}
& \text { Tro's Introductory Chemistry, Chapter } \\
& 6
\end{aligned}
$$

Atoms or Molecules and Moles

- If we can find the mass of a particular number of atoms or molecules, we can use this information to convert the mass of a element or compound sample to the number of atoms or molecules in the sample.

Counting Atoms or Molecules by Moles

The number of atoms or molecules we will use is 6.022×10^{23} and we call this a mole
$\checkmark 1$ mole $=6.022 \times 10^{23}$ particles
\checkmark Like 1 dozen $=12$ particles

We can make two conversion factors:
A)
B)

1 mole
6.022×10^{23} atoms
6.022×10^{23} atoms
1 mole
A) For converting atoms \rightarrow mole
B) For converting mole \rightarrow atoms

- The number of particles in 1 mole is called Avogadro's Number $=\mathbf{6 . 0 2 2 1 4 2 1} \times 10^{23}$

Practice 1

Conversion sequence: moles \rightarrow atoms, molecules

1. How many atoms are in 6.28 moles of aluminum?
2. How many atoms are in 90.43 moles of copper?
3. How many atoms in 7.64 moles of barium?
4. How many molecules in 3.72 moles of sulfur dioxide?
5.76 .4 moles of oxygen difluoride contain how many molecules?

Practice 2

Conversion sequence: atoms, molecules \rightarrow moles

1. How many moles of water are represented by 8.33 x 10^{18} molecules of water?
2. How many moles of magnesium is 3.01×10^{22} atoms of magnesium?
3. How many moles are 1.20×10^{25} atoms of phosphorous?

Moles and Mass

The mass of one mole of atoms or molecules is called the molar mass

Moles and Mass (cont.)

The molar mass of an element, in grams, is numerically equal to the element's atomic mass.

Moles and Mass (cont.)

The molar mass of a compound, in grams, is numerically equal to the sum of the atomic masses of the elements in the compounds formula.

The molar mass of water is calculated from the
atomic weights of hydrogen and oxygen.
Formula $=\mathrm{H}_{2} \mathrm{O}$
Formula Mass $=2(1.01 \mathrm{amu} \mathrm{H})+16.00 \mathrm{amu} \mathrm{O}=18.02 \mathrm{amu}$
Molar Mass $=18.02 \mathrm{~g}$
Tros shroductory Chemistry Chaper
6

Practice 3		
Calculate formula mass and Molar Mass		
FORMULA	FORMULA MASS (amu)	MOLAR MASS (g)
Br_{2}		
sodium sulfide		
potassium hydroxide		
fluorine		
$\mathbf{N i}$		
BaCl_{2}		
${\mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2}}^{l\|l\|}$		

Converting Between Grams and Moles

Practice 5

Conversion sequence: grams \rightarrow moles

How many moles for each of the following?

1. 28 grams of CO_{2}
2. 452 g of argon
3. 9.273 kg of zinc bicarbonate
4.25 .0 g of iron
5.88 .624 mg of silver

Converting Between Grams and Number of Atoms or Molecules

Practice 6

Conversion sequence: grams \rightarrow moles \rightarrow atoms

How many atoms or molecules for each of the following?

1. 28 grams of CO_{2}
2. 452 g of argon
3. 9.273 kg of zinc bicarbonate
4.25 .0 g of iron
5.88 .624 mg of silver

Practice 7

Conversion sequence: atoms \rightarrow moles \rightarrow grams

How many grams in each of the following?

1. 3.01×10^{23} atoms of sodium (Na)
2. 4.5×10^{25} atoms of argon
3. 9.27×10^{30} molecules of zinc bicarbonate
4. 2.50×10^{19} atoms of iron
$5.8 .86 \times 10^{15}$ molecules of dinitrogen tetroxide

6.5 Chemical Formulas as Conversion Factors

- 1 spider $\equiv 8$ legs
- 1 chair $\equiv 4$ legs
- $1 \mathrm{H}_{2} \mathrm{O}$ molecule $\equiv 2 \mathrm{H}$ atoms $\equiv 1 \mathrm{O}$ atom

Writing Mole Ratios

Moles of Compound	Moles of Constituents
1 mol NaCl	$1 \mathrm{~mole} \mathrm{Na}, 1 \mathrm{~mole} \mathrm{Cl}$
$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	$2 \mathrm{~mol} \mathrm{H}, 1 \mathrm{~mole} \mathrm{O}$
$1 \mathrm{~mol} \mathrm{CaCO}_{3}$	$1 \mathrm{~mol} \mathrm{Ca}, 1 \mathrm{~mol} \mathrm{C}, 3 \mathrm{~mol} \mathrm{O}$
$1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$6 \mathrm{~mol} \mathrm{C}, 12 \mathrm{~mol} \mathrm{H}, 6 \mathrm{~mol} \mathrm{O}$

6.6 Percent Composition

- Percentage of each element in a compound by mass

Determined from

1. The formula of the compound
2. The experimental mass analysis of the compound

$$
\text { Percentage }=\frac{\text { part }}{\text { whole }} \times 100 \%
$$

Practice 8

1. How many moles Cl in 4.7 mol CaCl 2 ?
2. How many mol of H in $54.1 \mathrm{~mol} \mathrm{C10H22?}$
3. How many oxygen atoms in $2.00 \mathrm{~mol}_{2}$?
4. How many grams of Cl in 55 g of $\mathrm{CF}_{3} \mathrm{Cl}$?
5. How many grams of Fe in $1.0 \times 10^{3} \mathrm{~kg}$ of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?

Mole Relationships in Chemical Formulas

Moles of Compound	Moles of Constituents
1 mol NaCl	$1 \mathrm{~mole} \mathrm{Na}, 1 \mathrm{~mole} \mathrm{Cl}$
$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	$2 \mathrm{~mol} \mathrm{H}, 1 \mathrm{~mole} \mathrm{O}$
$1 \mathrm{~mol} \mathrm{CaCO}_{3}$	$1 \mathrm{~mol} \mathrm{Ca}, 1 \mathrm{~mol} \mathrm{C}, 3 \mathrm{~mol} \mathrm{O}$
$1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$6 \mathrm{~mol} \mathrm{C}, 12 \mathrm{~mol} \mathrm{H}, 6 \mathrm{~mol} \mathrm{O}$

Aka...Mole Ratios... always whole number ratios
2. Percent Composition from experiment A 30.0 g sample of carvone contains 24.0 g of $\mathrm{C}, 3.2 \mathrm{~g} \mathrm{O}$ and the rest H ?

What is it's percent composition
6.8 \& 6.9 Empirical and Molecular Formulas

- The simplest, whole-number ratio of atoms in a molecule is called the Empirical Formula
- The Molecular Formula is a multiple of the Empirical Formula

Finding an Empirical Formula

1) convert the percentages to grams (skip if already grams)
2) convert grams to moles (use molar mass of each element)
3) write a pseudoformula using moles as subscripts
4) divide all by smallest number of moles
5) multiply all mole ratios by whole number ($2,3,4,5$, etc.) to make all mole ratios whole numbers. (skip if all mole ratios already whole numbers)

Finding an Empirical Formula from Experimental Data

Example:	
- A laboratory analysis of aspirin determined the following	
mass percent composition. Find the empirical formula.	
$\mathrm{C}=60.00 \%$	
$\mathrm{H}=4.48 \%$	
$\mathrm{O}=35.53 \%$	

All these molecules have the same Empirical Formula. How are the molecules different?			
\qquadName Molecular Formula Empirical Formula glyceraldehyde $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$ $\mathrm{CH}_{2} \mathrm{O}$ erythrose $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$ $\mathrm{CH}_{2} \mathrm{O}$ arabinose $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$ $\mathrm{CH}_{2} \mathrm{O}$ glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ $\mathrm{CH}_{2} \mathrm{O}$			

All these molecules have the same Empirical Formula. How are the molecules different?

Name	Molecular Formula	Molar Mass, g	Empirical Formula	EF Molar Mass, g
glyceraldehyde	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$	90	$\mathrm{CH}_{2} \mathrm{O}$	30
erythrose	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3}$	120	$\mathrm{CH}_{2} \mathrm{O}$	30
arabinose	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$	150	$\mathrm{CH}_{2} \mathrm{O}$	30
glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	180	$\mathrm{CH}_{2} \mathrm{O}$	30

All these molecules have the same Empirical Formula. How are the molecules different?

Name	Molecular Formula	Molar Mass, \mathbf{g}	Empirical Formula	EF Molar Mass, g	FACTOR
glyceraldehyde	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$	90	$\mathrm{CH}_{2} \mathrm{O}$	30	3
erythrose	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3}$	120	$\mathrm{CH}_{2} \mathrm{O}$	30	4
arabinose	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$	150	$\mathrm{CH}_{2} \mathrm{O}$	30	5
glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	180	$\mathrm{CH}_{2} \mathrm{O}$	30	6

Determine the Molecular Formula of
Cadinene if it has a molar mass of 204 g and an empirical formula of $\mathrm{C}_{5} \mathrm{H}_{8}$

1. Determine the empirical formula

- May need to calculate it as previous
$\mathrm{C}_{5} \mathrm{H}_{8}$

2. Determine the molar mass of the empirical formula

$$
\begin{gathered}
5 \mathrm{C}=60.05 \mathrm{~g}, 8 \mathrm{H}=8.064 \mathrm{~g} \\
\mathrm{C}_{5} \mathrm{H}_{8}=68.11 \mathrm{~g}
\end{gathered}
$$

3. Divide the given molar mass of the compound by the molar mass of the empirical formula
\checkmark Round to the nearest whole number

$$
\frac{204 \mathrm{~g}}{68.11 \mathrm{~g}}=3
$$

4. Multiply the empirical formula by the factor above to give the molecular formula

$$
\left(\mathrm{C}_{5} \mathrm{H}_{8}\right)_{3}=\mathrm{C}_{15} \mathrm{H}_{24}
$$

