Introductory Chemistry,
Nivaldo Tro
Chapter 9

- hydrogen - helium	
	May 6, 1937
	Cumas, Cumer

9.2 Atomic Emission (Line) Spectra

- Flame tests
- Lamps

Electromagnetic Radiation

- light is one of the forms of energy
- electromagnetic radiation

Electromagnetic Waves

9.3 The Electromagnetic Spectrum

- light passed through a prism is separated into all its colors - this is called a continuous spectrum
- the color of the light is determined by its wavelength

Energy and Light

- each wavelength of light has a different amount of energy

9.4 The Bohr Model of the Atom

- Bohr's major idea was that the energy of the atom was quantized
\checkmark quantized means specific amounts of energy
- The amount of energy was related to the electron's position in the atom

The Bohr Model of the Atom Electron Orbits

- in the Bohr Model, electrons travel in orbits around the nucleus

The Bohr Model of the Atom and

The Bohr Model of the Atom Success and Failure

- the mathematics of the Bohr Model very accurately predicts the spectrum of hydrogen
- however its mathematics fails when applied to multi-electron atoms
\checkmark it cannot account for electron-electron interactions
- a better theory was needed

The Bohr Model of the Atom Ground and Excited States

- each orbit has a specific amount of energy
- the energy of each orbit is characterized by an integer - the integer, \mathbf{n}, is called a quantum number

9.5 The Quantum-Mechanical Model of the Atom

- Erwin Schrödinger
- Wave, particle, probability, quantized energy $=$ Quantum mechanics model

The Quantum-Mechanical Model
 Quantum Numbers

- in Schrödinger's Wave Equation, there are 3 integers, called quantum numbers, that quantize the energy
- the principal quantum number, \mathbf{n}, specifies the main energy level for the orbital
\qquad $n=4$
\qquad $n=3$
\qquad $n=2$
\qquad $n=1$

Energy

Shells \& Subshells

The Quantum-Mechanical Model Orbitals

Not orbits!

The Quantum-Mechanical Model Quantum Numbers

- each principal energy shell has one or more subshells \checkmark the number of subshells $=$ the principal quantum number
- the quantum number that designates the subshell is often given a letter $\checkmark s, p, d, f$
- each kind of sublevel has orbitals with a particular shape
\checkmark the shape represents the probability map
$>90 \%$ probability of finding electron in that region

How does the $1 s$ Subshell Differ from the $2 s$ Subshell

Probability Maps \& Orbital Shape

Tro's Introductory Chemistry, Chapter

Probability Maps \& Orbital Shape p Orbitals

Subshells and Orbitals

- the subshells of a principal shell have slightly different energies
\checkmark the subshells in a shell of H all have the same energy, but for multielectron atoms the subshells have different energies
$\checkmark s<p<d<f$
- each subshell contains one or more orbitals
$\checkmark s$ subshells have 1 orbital
$\checkmark p$ subshells have 3 orbitals
$\checkmark d$ subshells have 5 orbitals
$\checkmark f$ subshells have 7 orbitals
Copyright 02006 Pearson Prentice Hall, inc.
$\begin{array}{cc}\text { Tro's Introductory Chemistry, Chapter } & 27\end{array}$

Electron Configurations

- the distribution of electrons into the various energy shells and subshells in an atom in its ground state is called its electron configuration
- each energy shell and subshell has a maximum number of electrons it can hold

$$
\checkmark s=2, p=6, d=10, f=14
$$

- we place electrons in the energy shells and subshells in order of energy, from low energy up \checkmark Aufbau Principal

Filling an Orbital with Electrons

- each orbital may have a maximum of 2 electrons
\checkmark Pauli Exclusion Principle
- electrons spin on an axis \checkmark generating their own magnetic field
- when two electrons are in the same orbital, they must have opposite spins \checkmark so there magnetic fields will cancel

Tro's Introductory Chemistry, Chapter

Order of Subshell Filling in Ground State Electron Configurations

start by drawing a diagram putting each energy shell on a row and listing the subshells, (s, p, d, f), for that shell in order of energy, (left-to-right)
next, draw arrows through the diagonals, looping back to the next diagonal each time

Orbital Diagrams

- we often represent an orbital as a square and the electrons in that orbital as arrows
\checkmark the direction of the arrow represents the spin of the electron

Filling the Orbitals in a Subshell with Electrons

- energy shells fill from lowest energy to high
- subshells fill from lowest energy to high $\checkmark s \rightarrow p \rightarrow d \rightarrow f$
- orbitals that are in the same subshell have the same energy
- when filling orbitals that have the same energy, place one electron in each before completing pairs
\checkmark Hund's Rule

Electron Configuration of Atoms in their Ground State

- the electron configuration is a listing of the subshells in order of filling with the number of electrons in that subshell written as a superscript
$\mathrm{Kr}=36$ electrons $=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$
- a shorthand way of writing an electron configuration is to use the symbol of the previous noble gas in [] to represent all the inner electrons, then just write the last set
$\mathrm{Rb}=37$ electrons $=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{1}=[\mathrm{Kr}] 5 s^{1}$

Example - Write the Ground State Orbital Diagram and Electron Configuration of Magnesium.

1. Determine the atomic number of the element from the Periodic Table
\checkmark This gives the number of protons and electrons in the atom
$\mathrm{Mg} \mathrm{Z}=12$, so Mg has 12 protons and 12 electrons

Example - Write the Ground State Orbital Diagram and Electron Configuration of Magnesium.

2. Draw 9 boxes to represent the first 3 energy levels \boldsymbol{s} and \boldsymbol{p} orbitals

Example - Write the Ground State Orbital Diagram and Electron Configuration of Magnesium.

3. Add one electron to each box in a set, then pair the electrons before going to the next set until you use all the electrons

- When pair, put in opposite arrows

Example - Write the Ground State Orbital Diagram and Electron Configuration of Magnesium.
4. Use the diagram to write the electron configuration
\checkmark Write the number of electrons in each set as a superscript next to the name of the orbital set $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}=[\mathrm{Ne}] 3 s^{2}$

Valence Electrons

$\mathrm{Rb}=37$ electrons $=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{1}$

- the highest principal energy shell of Rb that contains electrons is the $5^{\text {th }}$, therefore Rb has 1 valence electron and 36 core electrons
$\mathrm{Kr}=36$ electrons $=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$
- the highest principal energy shell of Kr that contains electrons is the $4^{\text {th }}$, therefore Kr has 8 valence electrons and 28 core electrons

Valence Electrons

- the electrons in all the subshells with the highest principal energy shell are called the valence electrons
- electrons in lower energy shells are called core electrons
- chemists have observed that one of the most important factors in the way an atom behaves, both chemically and physically, is the number of valence electrons

Electrons Configurations and the Periodic Table

1A							8A
1 H $1 \mathrm{~s}^{1}$	2A	3A	4A	5A	6A	7A	2 He $1 \mathrm{~s}^{2}$
3 Li $2 s^{1}$	$\begin{gathered} 4 \\ \hline \mathrm{Be} \\ 2 s^{2} \end{gathered}$	$\begin{gathered} 5 \\ \mathbf{B} \\ 2 s^{2} 2 p^{1} \\ \hline \end{gathered}$	$\stackrel{C}{\mathbf{C}}_{2 s^{2} 2 p^{2}}^{6}$	$\begin{gathered} 7 \\ \mathrm{~N} \\ 2 s^{2} 2 p^{3} \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{0} \\ 2 s^{2} 2 p^{4} \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 2 s^{2} 2 p^{5} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 2 s^{2} 2 p^{6} \\ \hline \end{gathered}$
11 Na $3 s^{1}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 3 s^{2} \end{gathered}$	$\begin{gathered} 13 \\ \mathrm{Al} \\ 3 s^{2} 3 p^{1} \end{gathered}$	$\begin{gathered} 14 \\ \stackrel{14}{\mathrm{Si}} \\ 3 s^{2} 3 p^{2} \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 3 s^{2} 3 p^{3} \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 3 s^{2} 3 p^{4} \end{gathered}$	$\begin{gathered} 17 \\ \stackrel{\mathrm{Cl}}{2} 3 p^{5} \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 3 s^{2} 3 p^{6} \end{gathered}$
Copyrigmo 2006 Peasion Prentice Hal,							
Tro's Introductory Chemistry, Chapter							42

Electron Configurations from the Periodic Table

- elements in the same period (row) have valence electrons in the same principal energy shell
- the number of valence electrons increases by one as you progress across the period
- elements in the same group (column) have the same number of valence electrons and they are in the same kind of subshell

Electron Configuration from the Periodic Table

$\mathrm{P}=[\mathrm{Ne}] 3 s^{2} 3 p^{3}$
P has 5 valence electrons $\underset{9}{\text { Tro's Introductory Chemistry, Chapter }}$

Electron Configuration from the Periodic Table

- the inner electron configuration is the same as the noble gas of the preceding period
- to get the outer electron configuration, from the preceding noble gas, loop through the next period, marking the subshells as you go, until you reach the element
\checkmark the valence energy shell $=$ the period number
\checkmark the d block is always one energy shell below the period number and the f is two energy shells below

The Explanatory Power of the Quantum-Mechanical Model

- the properties of the elements are largely determined by the number of valence electrons they contain
- since elements in the same column have the same number of valence electrons, they show similar properties

Everyone Wants to Be Like a Noble Gas!

 The Alkali Metals- the alkali metals have one more electron than the previous noble gas
- in their reactions, the alkali metals tend to lose their extra electron, resulting in the same electron configuration as a noble gas
\checkmark forming a cation with a $1+$ charge

Tro's Introductory Chemistry, Chapter
9
51

Everyone Wants to Be Like a Noble Gas!

- as a group, the alkali metals are the most reactive metals
\checkmark they react with many things and do so rapidly
- the halogens are the most reactive group of nonmetals
- one reason for their high reactivity is the fact that they are only one electron away from having a very stable electron configuration

[^0]
The Noble Gas Electron Configuration

- the noble gases have 8 valence electrons \checkmark except for He , which has only 2 electrons
- we know the noble gases are especially nonreactive
$\checkmark \mathrm{He}$ and Ne are practically inert
- the reason the noble gases are so nonreactive is that the electron configuration of the noble gases is especially stable

Everyone Wants to Be Like a Noble Gas!

The Halogens

- the electron configurations of the halogens all have one fewer electron than the next noble gas
- in their reactions with metals, the halogens tend to gain an electron and attain the electron configuration of the next noble gas
\checkmark forming an anion with charge 1 -
- in their reactions with nonmetals they tend to share electrons with the other nonmetal so that each attains the electron configuration of a noble gas

Stable Electron Configuration And Ion Charge

- Metals form cations by losing enough electrons to get the same electron configuration as the previous noble gas
- Nonmetals form anions by gaining enough electrons to get the same electron

Atom	Atom's Electron Config	Ion	Ion's Electron Config
Na	$[\mathrm{Ne}] 3 \mathrm{~s}^{1}$	Na^{+}	$[\mathrm{Ne}]$
Mg	$[\mathrm{Ne}] 3 \mathrm{~s}^{2}$	Mg^{2+}	$[\mathrm{Ne}]$
Al	$[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{1}$	Al^{3+}	$[\mathrm{Ne}]$
O	$[\mathrm{He}] 2{\mathrm{~s} 2 \mathrm{p}^{4}}^{2-}$	$[\mathrm{Ne}]$	
F	$[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{5}$	F	$[\mathrm{Ne}]$

Periodic Trends in the Properties of the Elements

Trends in Atomic Size

- either volume or radius \checkmark treat atom as a hard marble
- Increases down a group
\checkmark valence shell farther from nucleus
\checkmark effective nuclear charge fairly close
- Decreases across a period (left to right)
\checkmark adding electrons to same valence shell
\checkmark effective nuclear charge increases
\checkmark valence shell held closer

Group IIA
$B e\left(4 \mathrm{p}^{+} \& 4 \mathrm{e}^{-}\right)$

$\mathrm{Mg}\left(12 \mathrm{p}^{+} \& 12 \mathrm{e}^{-}\right)$

$\mathrm{Ca}\left(20 \mathrm{p}^{+} \& 20 \mathrm{e}^{-}\right)$

Example 9.6 - Choose the Larger Atom in Each Pair

- C or O
- Li or K
- C or Al
- Se or I

Ionization Energy

- minimum energy needed to remove an electron from an atom
\checkmark gas state
\checkmark endothermic process
\checkmark valence electron easiest to remove
$\checkmark \mathrm{M}(\mathrm{g})+1$ st $\mathrm{IE} \rightarrow \mathrm{M}^{1+}(\mathrm{g})+1 \mathrm{e}^{-}$
$\checkmark \mathrm{M}^{+1}(\mathrm{~g})+2 \mathrm{nd} \mathrm{IE} \rightarrow \mathrm{M}^{2+}(\mathrm{g})+1 \mathrm{e}^{-}$
$>$ first ionization energy $=$ energy to remove electron from neutral atom; 2nd IE = energy to remove from +1 ion; etc.

Trends in Ionization Energy

Example 9.6 - Choose the Larger Atom in Each Pair

- C or O
- Li or K
- C or Al
- Se or I?

Trends in Ionization Energy

- as atomic radius increases, the IE generally decreases
\checkmark because the electron is closer to the nucleus
- 1st IE < 2nd IE < 3rd IE ...
- 1st IE decreases down the group
\checkmark valence electron farther from nucleus
- 1st IE generally increases across the period \checkmark effective nuclear charge increases

Example 9.7 - Choose the Atom with the Highest Ionization Energy in Each Pair

- Mg or P
- As or Sb
- N or Si
- O or Cl

Example 9.7 - Choose the Atom with the Highest Ionization Energy in Each Pair

- Mg or P
- As or Sb
- N or Si
- O or Cl ?

Metallic Character

- how well an element's properties match the general properties of a metal
- Metals
\checkmark malleable \& ductile
\checkmark shiny, lusterous, reflect light
\checkmark conduct heat and electricity
\checkmark most oxides basic and ionic
\checkmark form cations in solution
\checkmark lose electrons in reactions - oxidized
- Nonmetals
\checkmark brittle in solid state
\checkmark dull
\checkmark electrical and thermal insulators
\checkmark most oxides are acidic and molecular
\checkmark form anions and polyatomic anions
\checkmark gain electrons in reactions - reduced

Example 9.8 - Choose the More Metallic Element in Each Pair

- Sn or Te
- Si or Sn
- Br or Te
- Se or I

Example 9.8 - Choose the More Metallic Element in Each Pair

- Sn or Te
- Si or Sn
- Br or Te
- Se or I?

[^0]: \checkmark the same as a noble gas

