

Dalton's Atomic Theory

- Elements are composed of atoms

 ✓ tiny, hard, unbreakable, spheres
- 2. All atoms of an element are identical
- Atoms combine in simple, whole-number ratios to form molecules of compounds
 - Law of Constant Composition
 - Chemical Formulas

Tro's Introductory Chemistry, Chapter

(1766-1844)

3

Sizes of Atoms

- using compositions of compounds and assumed formulas, Dalton was able to determine the relative masses of the atoms
 ✓ Dalton based his scale on H = 1 amu
 - ✓ unit = atomic mass unit
- absolute sizes of atoms
 ✓ mass of H atom= 1.67 x 10⁻²⁴g
 - ✓ Diameter ~ 1 x 10^{-10} m
 - ✓ volume of H atom = $2.1 \times 10^{-25} \text{cm}^3$

Tro's Introductory Chemistry, Chapter

14

16

Rutherford's Results

- Over 98% of the α particles went straight through
- About 2% of the α particles went through but were deflected by large angles
- About 0.01% of the α particles bounced off the gold foil
 - ✓ "...as if you fired a 15" canon shell at a piece of tissue paper and it came back and hit you."

13

15

Rutherford exp

Tro's Introductory Chemistry, Chapter

Rutherford's Conclusions

- · Atom mostly empty space
- Atom contains a dense particle that was small in volume compared to the atom but large in mass
- · This dense particle was positively charged

Tro's Introductory Chemistry, Chapter

Rutherford's Interpretation – the Nuclear Model

- 1) The atom contains a tiny dense center called the **nucleus**
 - ✓ Nucleus = baseball; atom = 2.5 mi, electron = period
- 2) The nucleus has essentially the entire mass of the atom
- 3) The nucleus is positively charged
- 4) The electrons move around in the empty space of the atom surrounding the nucleus

4.4 Structure of the Atom

- Rutherford proposed that the nucleus had a particle that had the **same amount of charge as an electron** but opposite sign a "**proton**"
- For the *atom to be neutral there must be equal numbers of protons and electrons*
- The nucleus also contains neutrons...mass and proton repulsion.

Subatomic Particle	Mass g	Mass amu	Location in atom	Charge	Symbol
x 10 ⁻²⁴					
Electron	0.0009	~0	empty space	-1	e, e
	x 10 ⁻²⁴				
Neutron	1.67	1	nucleus	0	n, n ⁰
	x 10 ⁻²⁴				