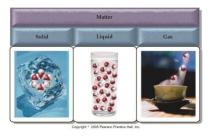

Introductory Chemistry, 2nd Edition Nivaldo Tro

Chapter 3 Matter and Energy

Roy Kennedy Massachusetts Bay Community College Wellesley Hills, MA 2006, Prentice Hall

Tro's Introductory Chemistry, Chapter

2


Visible/measurable properties

State	Shape	Volume	Compress	Flow
Solid	Fixed	Fixed	No	No
Liquid	Indef.	Fixed	No	Yes
Gas	Indef.	Indef.	Yes	Yes

"Room temperature"

Tro's Introductory Chemistry, Chapter

The motion and arrangement of the atoms or molecules determine the physical state of matter.

Solids

• the particles in a solid are packed *close together* and are *fixed in position*

5

3

Solids

- crystalline solids ٠ ✓ salt and diamonds
- amorphous solids ✓ plastic and glass

(b) Amorphous solid

Tro's Introductory Chemistry, Chapter

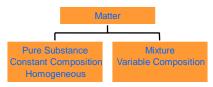
8

Liquids

 the particles are <u>closely</u> <u>packed</u>, <u>move around</u> and have a <u>random</u> arrangement.

Gases

• the particles are <u>widely separated</u>, <u>rapidly moving</u>, <u>random</u>.


Tro's Introductory Chemistry, Chapter

7

9

Classification of Matter

Tro's Introductory Chemistry, Chapter

- **Mixtures** = different samples may have the same pieces in different percentages

✓ salt water

Tro's Introductory Chemistry, Chapter

Copper – a Pure Substance

Tro's Introductory Chemistry, Chapter 10

Tro's Introductory Chemistry, Chapter

12

Brass – a Mixture

Atoms & Molecules

- · Smallest piece of an element is called an atom
 - ✓ there are subatomic particles, but these are no longer the element
- Smallest piece of a compound is called a molecule
 - ✓ molecules are made of atoms
 - ✓ all molecules of a compound are identical
 - \checkmark each molecule has the same number and type of atoms 13

Tro's Introductory Chemistry, Chapter

Properties of Matter

• Physical Properties are the characteristics of matter that can be changed without changing its composition

 \checkmark characteristics that are directly observable

- Chemical Properties are the characteristics that determine how the composition of matter changes as a result of contact with other matter or the influence of energy
 - \checkmark characteristics that describe the behavior of matter

Tro's Introductory Chemistry, Chapter 14

	•	A
mass	volume	density
solid	liquid	gas
melting point	boiling point	volatility
taste	odor	color
texture	shape	solubility
electrical conductance	thermal conductance	magnetism
malleability	ductility	specific heat capcity
	Tro's Introductory Chemistry, Chapte 3	r 15

Some Physical Properties

Some Chemical Properties

Acidity	Basicity (aka Alkalinity)
Causticity	Corrosiveness
Reactivity	Stability
Inertness	Explosiveness
(In)Flammability	Combustibility
Oxidizing Ability	Reducing Ability

Tro's Introductory Chemistry, Chapter

3.6 Changes in Matter

Tro's Introductory Chemistry, Chapter

17

Changes in Matter

Tro's Introductory Chemistry, Chapter

18

20

Is it a Physical or Chemical Change?

To's Introductory Chemistry, Chapter 19

Tro's Introductory Chemistry, Chapter 19 3

Separation of Mixtures

Tro's Introductory Chemistry, Chapter 21 3

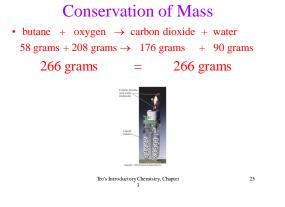
Filtration

Tro's Introductory Chemistry, Chapter

23

Phase Changes are Physical Changes

Tro's Introductory Chemistry, Chapter


1	Dis	tillation	
Mixture of liquids Boiling flask	Cold	Cold water in Receiving	
	Burner	More volatile liquid	22
	Copyright # 2	005 Pearson Prentice Hall, Inc.	

3.7 Law of Conservation of Mass

• "Matter is neither created nor destroyed in a chemical reaction"

Tro's Introductory Chemistry, Chapter

3.8 Energy

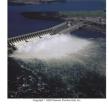
• Energy is anything that has the capacity to do work

> Tro's Introductory Chemistry, Chapter 26

Law of Conservation of Energy

• "Energy can neither be created nor destroyed"

Matter Possesses Energy


· all chemical and physical changes result in the matter changing energy

Tro's Introductory Chemistry, Chapter 27

Kinds of Energy **Kinetic and Potential**

Tro's Introductory Chemistry, Chapter

- Kinetic Energy is energy of motion, or energy that is being transferred from one object to another
- **Potential Energy** is energy that is stored

29

Some Forms of Energy

Tro's Introductory Chemistry, Chapter

28

30

Tro's Introductory Chemistry, Chapter

Units of Energy

calorie (cal) is the amount of energy needed to raise one gram of water by 1°C
✓ kcal = energy needed to raise 1000 g of water 1°C
✓ food Calories = kcals

Energy Conversion Factors

Example:

many joules does it contain?

1 calorie (cal)	=	4.184 joules (J)
1 Calorie (Cal)	=	1000 calories (cal)
1 kilowatt-hour (kWh)	=	3.60 x 106 joules (J)

Tro's Introductory Chemistry, Chapter 31

Example 3.5: Conversion of Energy Units

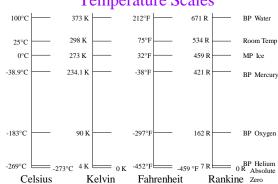
kinetic energy of the molecules in a sample

Tro's Introductory Chemistry, Chapter

34

3.9 Temperature

· A candy bar contains 225 Cal of nutritional energy. How


Tro's Introductory Chemistry, Chapter

- Temperature is a **measure** of the average kinetic energy of the molecules in a sample
- Not all molecules have in a sample the same amount of kinetic energy
- a higher temperature means a larger average kinetic energy

Tro's Introductory Chemistry, Chapter

35

33

Temperature Scales

Example 3.8: Converting Between Fahrenheit and Kelvin Temperature Scales

Example: • Convert 310 K to Fahrenheit Tro's Introductory Chemistry, Chapter 38

3.10 Energy and the Temperature of Matter

- The amount the temperature of an object increases depends on the amount of heat energy added (q).
- The amount the temperature of an object increases depends on its mass

Heat Capacity

- heat capacity is the amount of heat a substance must absorb to raise its temperature 1°C ✓ cal/°C or J/°C
 - ✓ metals have low heat capacities, insulators high
- **specific heat** = heat capacity of 1 gram of the substance
 - ✓ cal/g°C or J/g°C
 - ✓ waters specific heat = 4.184 J/g°C for liquid ≻or 1.000 cal/g°C

≥less for ice and steam

Tro's Introductory Chemistry, Chapter

Specific Heat Capacity

Tro's Introductory Chemistry, Chapter

• Specific Heat is the amount of energy required to raise the temperature of one gram of a substance by one Celsius degree

Specific Heat Capacities

	1
Substance	Specific Heat J/g•C
Aluminum	0.895
Calcium	0.656
Carbon (dia)	0.508
Carbon (gra)	0.708
Copper	0.377
Gold	0.129
Iron	0.448
Lead	0.129
Silver	0.712
Water (1)	4.184
Water (s)	2.03
Water (g)	2.02
Water (s)	

Tro's Introductory Chemistry, Chapter

41

39

Tro's Introductory Chemistry, Chapter

42

Heat Gain or Loss by an Object

• the amount of heat energy gained or lost by an object depends on 3 factors – how much material there is, what the material is, and how much the temperature changed

Amount of Heat = Mass x Heat Capacity x Temperature Change $q=m \; x \; C \; x \; \Delta T$

Tro's Introductory Chemistry, Chapter 43

Example 3.9: Relating Heat Energy to Temperature Change

Example:

Gallium is a solid metal at room temperature, but melts at 29.9°C. If you hold gallium in your hand, it melts from body heat. How much heat must 2.5 g of gallium absorb from your hand to raise its temperature from 25.0°C to 29.9°C? The heat capacity of gallium is 0.372 J/g°C

Tro's Introductory Chemistry, Chapter