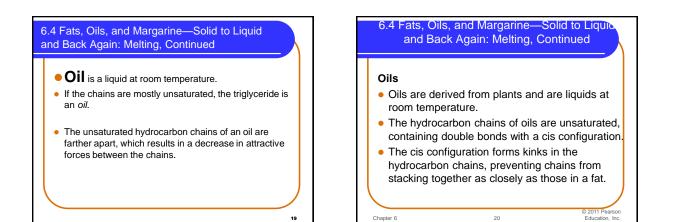
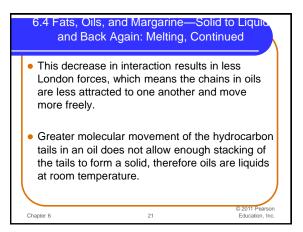
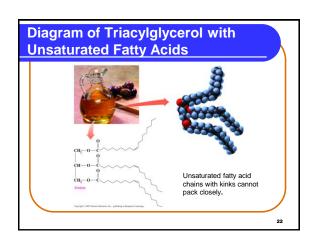
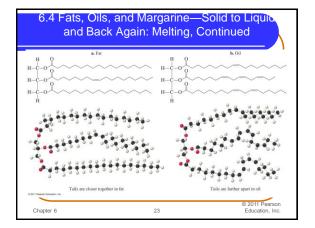
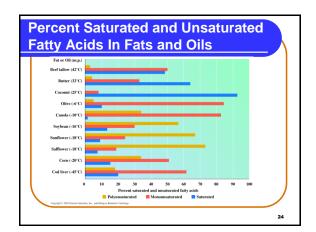

Name	Carbon Atoms	Double Bonds	Structure	Melting Point (°C)
Saturated				
Lauric acid	12	0	CH ₃ -(CH ₂) ₁₀ -COOH	43
Myristic acid	14	0	CH ₃ -(CH ₂) ₁₂ -COOH	54
Palmitic acid	16	0	CH ₃ -(CH ₂) ₁₄ -COOH	62
Stearic acid	18	0	CH ₃ -(CH ₂) ₁₆ -COOH	69
Unsaturated			5 1 210	
Palmitoleic acid	16	1	CH ₃ -(CH ₂) ₅ -CH=CH-(CH ₂) ₇ -COOH	0
Oleic acid	18	1	CH ₃ -(CH ₂) ₇ -CH=CH-(CH ₂) ₇ -COOH	13
Linoleic acid	18	2	CH ₃ -(CH ₂) ₄ -CH=CH-CH ₂ -CH=CH-	(CH ₂) ₇ —COC -9

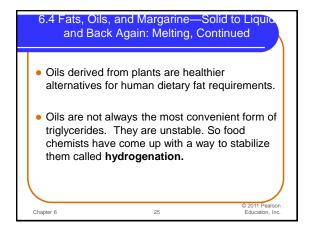

FATTY ACIDS								
No of Calons	STRUCTURE	System atic NAME	COMMON NAME	MP °C	SHORTHAN			
10	СН3 (СН2), СООН	n-decansic acid	coprie and	31.6	Cupio			
12	CH3 (CH2) COOM	n-dodecanaic acid	laurie	44-2	Caro			
14	CH3 (CH2)12 COOH	n-tehradecanoic	myrishic	539	Cinio			
16	CH3 ((12), 000M	n. hexadecanoic	palmitic	63-1	Cuio			
18	CH3 (CH2) COON	n-odadecanoic	slearic	69-6	Caro			
20	CH3 (CH2) COOH	n-eicosonoic	arachiclic	765	C1010			
24	CH3 (CH2) COOH	n-tetracosanoic	lignocorie	86.0	C24 '0			

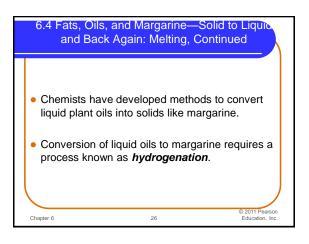

Nost C atoms	STRUCTURE / SYSTEMATIC NAME	COMMON NAME	MP°L	SHOZTHAN
16	CH3 (CH3)5 CH = CH(CH2) + COCH cis-9- Mexaclecanoic acid	palniboleie	-0.6	C16:1 29
18	CH3 (CH2)2 CH=CH (CH2)2 COOH cis-9 octadecensis acid	olaic	13-4	С _{18:1} Д ⁹
18	CH3(CH3) ₄ CH = CH−CH2−CH=CH (CH3)3 COON (is cis-4,12 ocheskeennic acid	linoleic	-5.0	C18:2 09/12
18	مع دس در احد مر مر مع مر ما مع در مر	d		C12:3 (2.13,15
20	(Hg(CH2)_ (H=CH_CH2-CH=CH - CH2-CH=CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-	-(ch_)_coon anchida	nic -49.5	C20:4 05. 441,4

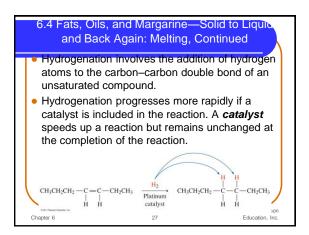


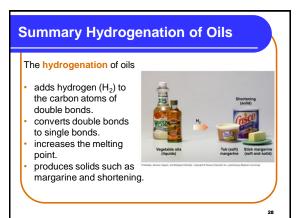


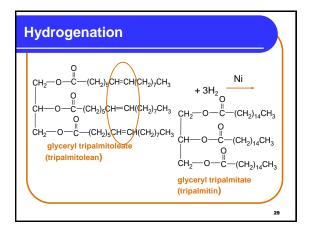


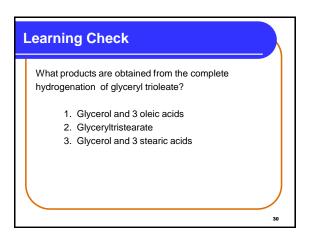


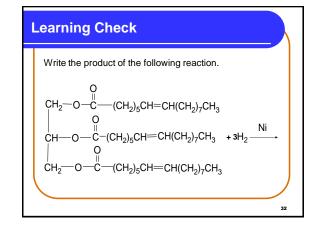


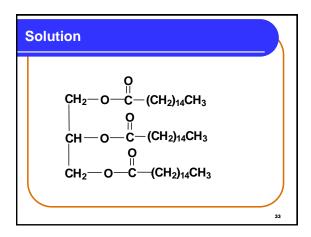






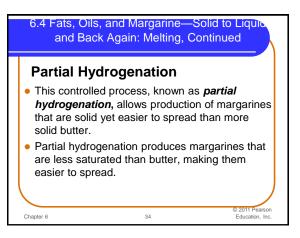




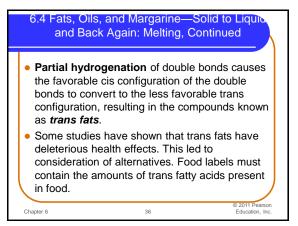


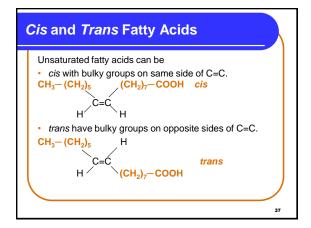
Solution

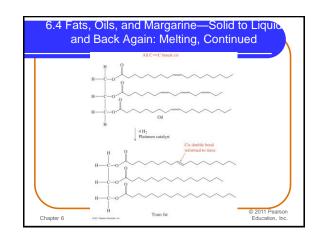
What products are obtained from the complete hydrogenation of glyceryl trioleate?

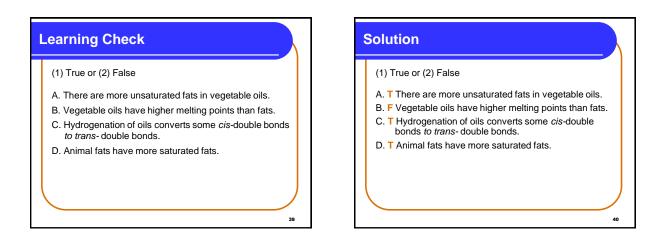

2. Glyceryltristearate

31

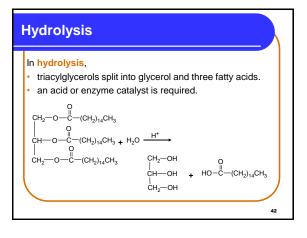

35




Hydrogenation and Trans Fatty Acids


Most naturally occurring fatty acids have *cis* double bonds.

- During hydrogenation, some *cis* double bonds are converted to *trans* double bonds.
- In the body, *trans* fatty acids behave like saturated fatty acids.
- It is estimated that 2-4% of our total Calories is in the form of *trans* fatty acid.
- Several studies reported that *trans* fatty acids raise LDL-cholesterol and lower HDL-cholesterol.



41

Chemical Properties of Triacylglycerols

The chemical reactions of triacylglycerols are similar to those of alkenes and esters.

- In hydrogenation, double bonds in unsaturated fatty acids react with H₂ in the presence of a Ni or Pt catalyst.
- In hydrolysis, ester bonds are split by water in the presence of an acid, a base, or an enzyme.

Saponification and Soap

Saponification

- is the reaction of a fat with a strong base.
- splits triacylglycerols into glycerol and the salts of fatty acids.
- is the process of forming "soaps" (salts of fatty acids).
- with KOH gives softer soaps.

$\begin{array}{c} 0 \\ CH_{2}-O-\overset{O}{C}-(CH_{2})_{14}CH_{3} \\ \mid & O \\ CH-O-\overset{H}{C}-(CH_{2})_{14}CH_{3} \\ \mid & \bullet \\ CH_{2}-O-\overset{H}{C}-(CH_{2})_{14}CH_{3} \\ \bullet \\ CH_{2}-OH \\ \end{array} \xrightarrow{ \begin{array}{c} CH_{2}-OH \\ H_{2}-OH \\ \end{array} \xrightarrow{ \begin{array}{c} CH_{2}-OH \\ \end{array} \xrightarrow{ \begin{array}{c} CH_{2}-OH \\ H_{2}-OH \\ \end{array} \xrightarrow{ \begin{array}{c} CH_{2}-OH \\ H_{2}-OH \\ \end{array} \xrightarrow{ \begin{array}{c} CH_{2}-OH \\ \end{array} \xrightarrow{ \end{array} \xrightarrow{ \begin{array}{c} CH_{2}-OH \\ \end{array} \xrightarrow{ \begin{array}{c} CH_{2}-OH \\ \end{array} \xrightarrow{ \begin{array}{c} CH_{2}-OH \\ \end{array} \xrightarrow{ \end{array} \xrightarrow{ \end{array} \xrightarrow{ \end{array} \xrightarrow{ \end{array} \xrightarrow{ } CH_{2}-OH \\ \end{array} \xrightarrow{ \end{array} \xrightarrow{ \end{array} \xrightarrow{ \end{array} \xrightarrow{ } \end{array} \xrightarrow{ \end{array} \xrightarrow$

Learning Check

What products are obtained from the complete hydrolysis of glyceryl trioleate?

- 1. Glycerol and 3 oleic acids
- 2. Glyceryl tristearate
- 3. Glycerol and 3 stearic acids

Solution

43

45

Saponification

What products are obtained from the complete hydrolysis of glyceryl trioleate?

1. Glycerol and 3 oleic acids

46