## 3 kinds of isomerism

1. Constitutional (structural) isomerism
$\rightarrow$ Structural $-\mathrm{C}=\mathrm{C}$ or ring
$>$ Skeletal - C atoms connected in a different order
> Positional - The location of $\mathrm{C}=\mathrm{C}$ varies but the C skeleton remains unchanged
2. Stereoisomerism (geometric isomerism)

Because of the rigidity of $\mathrm{C}=\mathrm{C}$ there can be cis-trans isomerism in alkenes.


Alkenes \& cyclic alkanes are constitutional isomers

## 1. Constitutional isomerism (cont.)

- One $\mathrm{C}=\mathrm{C} \rightarrow \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$ e.g., $\mathrm{C}_{3} \mathrm{H}_{6} \quad$ or
- One ring


## Structural isomers $\rightarrow \mathrm{C}=\mathrm{C}$ or ring

$$
0
$$

- open-chain (linear and branched) and cyclic
- Generic formula: Start with $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$ and minus two for each $\mathbf{C}=\mathbf{C}$
- one $\mathrm{C}=\mathrm{C} \rightarrow \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n} \quad$ e.g., $\mathrm{C}_{2} \mathrm{H}_{4}$


2

1. Constitutional isomerism (cont.)
> Skeletal - C atoms connected in a different order
cis AND trans ISOMERS

## The atoms attached to the C=C are locked in place

Because there is no rotation about a carbon-carbon bond



THIS GIVES STEREO or SKELETAL
ISOMERS

COMPARE cis /trans ISOMERS IN RING COMPOUNDS


trans


In alkenes and rings cis I trans isomers are called stereoisomers or geometric isomers.

## CISITRANS ISOMERS

substituents on the same side of main chain
substituents on opposite sides of main chain

trans



TWO IDENTICAL SUBSTITUENTS
RULE: A C=C at the end of a chain cannot be cis/trans





RULE: If there are two identical substituents on one of the double-bond-carbons, cis / trans is not possible.







13

This compound is cis Although the two methyl groups are trans to each other they don't determine the name of the compound.

ch
This compound is trans Although the two methyl groups are cisto each other they don't determine the name of the compound.



