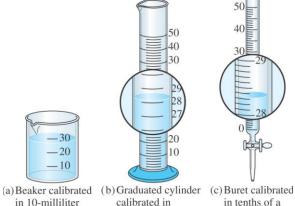
Uncertainty in measurement

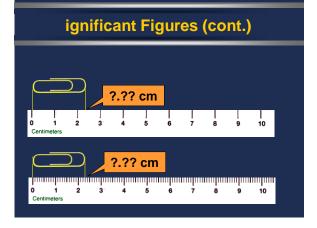

- > Every measurement has error associated with it.
- > The more precise the measurement the less error.
- > Error in a measurement is indicated by the number of significant figures in the number

Uncertainty in measurement

- > Which measurement has less error?
- > Which measurement is more precise?
- > Which measurement has more significant figures?

29.2°C or

units

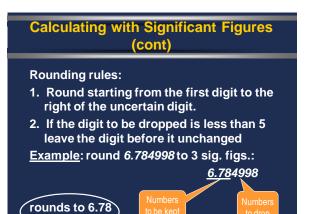

in 10-milliliter milliliters in tenths of a milliliter

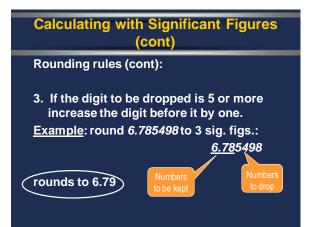
Kelo

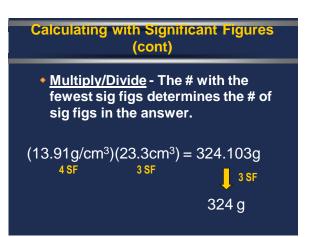
31

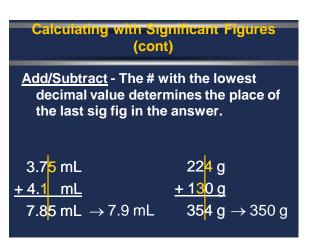
Significant Figures

- Indicate precision of a Sig. figs. do not apply to exact numbers
- Recording Sig Figs
 - Sig figs in a measurement include the known digits plus a final estimated digit


Significant Figures (cont)


- > Counting Sig Figs (p.18)
 - Count all numbers EXCEPT:
 - ♦ Leading zeros -- 0.0025
 - Trailing zeros without a decimal point -- 2,500


Significant Figures (cont)		
Counting Sig Fig Examples		
1. 23.50	4 sig figs	
2. 402	3 sig figs	
3. 5,28 0	3 sig figs	
4. 0.0 <mark>80</mark>	2 sig figs	
	SEE SUMMARY PAGE 21	


Calculating with Significant Figures

• <u>Rounding numbers</u> Definition - Dropping insignificant digits after a calculation. <u>DOES NOT APPLY TO MEASUREMENTS</u>

Calculating with Significant Figures (cont)

- Calculating with Sig Figs (con't)
 - Exact Numbers do not limit the # of sig figs in the answer.
 - Counting numbers: 12 students
 - ♦ Exact conversions: 1 m = 100 cm
 - ♦ "1" in any conversion: 1 in = 2.54 cm

Calculating with Significant Figures (cont)

Practice Problems

 $(15.30 \text{ g}) \div (6.4 \text{ mL}) = 2.390625 \text{ g/mL}$

18.9 g <u>- 0.84 g</u> 18.06 g

Scientific Notation

$65,000 \text{ kg} \rightarrow 6.5 \times 10^4 \text{ kg}$

> Converting into Sci. Notation:

- Move decimal until there's 1 digit to its left. Places moved = exponent.
- Large # (>1) ⇒ positive exponent
 Small # (<1) ⇒ negative exponent

Only include sig figs.

Scientific Notation (cont.)

Practice Problems

7.	2,400,000 μg	sci. notation
8.	0.00256 kg	sci. notation
9.	$7 imes 10^{-5} \text{ km}$	decimal notation
10.	$6.2 imes 10^4 \text{ mm}$	decimal notation

Scientific Notation> Calculating with Sci. Notation
 $(5.44 \times 10^7 \text{ g}) \div (8.1 \times 10^4 \text{ mol}) =$ Type on your calculator:5.44EXP
EE7 \div
 \bullet 8.1EXP
EE4EXE
ENTER= 671.6049383

Scientific Notation • Rounding $(5.44 \times 10^7 \text{ g}) \div (8.1 \times 10^4 \text{ mol}) =$ 3 sig figs= 671.6049383 = 670 g/mol = 6.7 × 10² g/mol