Solutions Worksheet \#5

1. What would be the percent concentration of each of the following solutions?
a. 54.0 g of $\mathrm{AgNO}_{3} \mathrm{~g}$ is dissolved in 128 g of water.
b. 4.22 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ is dissolved in 426 mL of water.
c. 0.762 g of ZnF_{2} is dissolved in 1.30 liters of water.
2. What weight of solute is needed to produce each of the indicated solutions?
a. 500.0 g of a $6.40 \% \mathrm{NaCl}$ solution.
b. 136 g of a $14.2 \% \mathrm{LiNO}_{3}$ solution.
c. 42.2 g of a $7.60 \% \mathrm{AgNO}_{3}$ solution.
3. How many grams of water should be used in each of the problems in " 2 " above.
4. How many grams of the following solutes would you need to prepare the indicated volume and concentration of the solutions given?
a. $340 . \mathrm{mL}$ of a 1.82 M aluminum nitrate solution.
b. 25.0 mL of a 4.26 M potassium cyanide solution.
c. 370 mL of a 0.00674 M ammonium sulfate solution.
5. What should the final volume (mL) of each solution be so that the amount of solute dissolved will produce the indicated concentration.
a. 2.86 g of copper(I) carbonate to produce a 0.640 M solution.
b. 12.62 g of calcium hydrogen carbonate to produce a 1.28 M solution.
c. 54.26 g of sodium oxide to produce a 0.430 M solution.
6. What will be the final concentration of a solution prepared by dissolving the indicated solute in enough water to produce the indicated volume of solution?
a. 15.4 g of strontium acetate filled up to $340 . \mathrm{mL}$.
b. 176.2 g of Iron (III) sulfite filled up to 1.42 liters.
c. 3.22 g of copper(I) chlorate filled up to 40.0 liters.

Next Page

7. What will be the final concentration of the solution indicated that will result from the following dilutions?
a. 14.0 mL of a $4.20 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution is diluted to 86.0 mL .
b. $450 . \mathrm{mL}$ of a 1.22 M HCl solution is diluted to 1.26 liters.
8. To what volume should the indicated solution be diluted to produce a solution of the desired concentration?
a. 12.0 mL of a 0.64 M KCl solution to produce a 0.19 M solution.
b. 84.2 mL of a $4.60 \mathrm{M} \mathrm{KMnO}_{4}$ solution to produce a 1.42 M solution.
9. What volume of the indicated solution is needed to produce the volume and concentration of a diluted solution as indicated?
a. 2.73 M NaOH solution to prepare 142 mL of a 0.540 M solution.
b. $0.0076 \mathrm{M} \mathrm{SnF}_{2}$ solution to prepare 25.0 mL of a 0.00027 M solution.
$1 \mathrm{lb} .=454 \mathrm{~g} \quad 1 \mathrm{qt} .=946 \mathrm{~mL} \quad 4$ quarts $=1$ gallon \quad density of water $=1 \mathrm{~g} / \mathrm{mL}$

Solutions

1.

2.
3.

a. 29.7%
a. 32.0 g NaCl
a. $468 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
b. 0.981%
b. $19.3 \mathrm{~g} \mathrm{LiNO}_{3}$
b. $117 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
c. 0.0586%
c. $3.21 \mathrm{~g} \mathrm{AgNO}_{3}$
4.
a. $132 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right) 3$
b. 6.93 g KCN
c. $39.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
c. $0.329 \mathrm{~g}(\mathrm{NH} 4)_{2} \mathrm{SO}_{4}$
5.
6.
a. 23.9 mL
a. 0.220 M
b. 60.8 mL
b. 0.353 M
c. $2,040 \mathrm{~mL}$
c. $5.48 \times 10^{-4} \mathrm{M}$

