Oxidation is (with examples):

- a loss of electrons (OIL) Na· \rightarrow Na⁺ + e⁻
- a more positive oxidation number $Na \rightarrow Na^+ + e^$ ox = 0
- a loss of hydrogen atoms (see carbon or oxygen)
 CH₃⁻CH₃ → CH₂=CH₂

 $2H_2O \rightarrow 2H_2 + O_2$

- the addition of oxygen atoms (see oxygen) $2H_2 + O_2 \rightarrow 2H_2O$
- more bonds to oxygen (see carbon) CH₄ + O₂ \rightarrow CO₂ + 2H₂O

Reduction is (with examples):

• a gain of electrons (RIG)

 $\ddot{C}l$: + $e^{-} \rightarrow \ddot{C}l$:

• a less positive oxidation number (*more negative*)

$$:Cl:_{\text{ox}\#=0} + e^{-} \rightarrow :Cl:_{\text{ox}\#=-1}$$

- a gain of hydrogen atoms (see carbon) $CO_2 + 2H_2O \rightarrow CH_4 + O_2$
- the loss of oxygen atoms (see carbon) $CO_2 + 2H_2O \rightarrow CH_4 + O_2$
- the loss of bonds to oxygen (see carbon) $CO_2 + 2H_2O \rightarrow CH_4 + O_2$

HOW TO DETERMINE OXIDATION NUMBERS

The determination of the oxidation number (or oxidation state) of chemical compounds can be made by following a few simple rules.

- 1. The oxidation numbers of <u>an atom</u> (an element, e.g., Fe) or the atoms in a neutral molecule must add up to zero.
- 2. If an atom (Cl⁻) or molecule is ionic its oxidation number must add up to its overall charge. Cl⁻ = -1
- 3. Alkali metal atoms (Group I) have an oxidation number equal to +1 within compounds. Alkali earth atoms (Group II) have an oxidation number of +2 within compounds.
- 4. All halogens in compounds have a -1 oxidation number.
- 5. Hydrogen is always assigned a +1 oxidation number in compounds.
- 6. Oxygen is assigned an oxidation number of -2 in compounds.

Examples:

What is the oxidation numbers for all the atoms in CH_3OH

A) Using Rules 5 and 6 hydrogen is +1 and oxygen is -2.

B) Using Rule 1: 4H = +4 and 1O=-2; therefore C must be -2 because all the oxidation numbers must add to zero:

4H + 1O + 1C (+4) + (-2) + (-2) = 0

Oxidation numbers for carbon atoms can also be determined as follows:

(a) Carbon oxidation numbers: each C-C = 0, C-H = -1 and each C-O = +1 (b) Add them up to determine the oxidation number of the carbon atom.				
What are the oxidation numbers for the carbons in the following compounds?				
	CH₃ CH₃-C-OH CH₃	CH ₃ -C=O H	О СН₃-С-ОН	
Try these:				
carbon is:	CH₄ -4	CO ₂ +4	СН₃ОН -2	