OXIDATION AND REDUCTION

Oxidation is (with examples):

- a loss of electrons (OIL)
$\mathrm{Na} \cdot \rightarrow \mathrm{Na}^{+}+\mathrm{e}^{-}$
- a more positive oxidation number
$\underset{\text { ox\# }=0}{\mathrm{Na}} \rightarrow \underset{\text { ox\# }=+1}{\mathrm{Na}^{+}}+\mathrm{e}^{-}$
- a loss of hydrogen atoms (see carbon or oxygen)
$\mathrm{CH}_{3}{ }^{-} \mathrm{CH}_{3} \rightarrow \mathrm{CH}_{2}=\mathrm{CH}_{2}$
$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
- the addition of oxygen atoms (see oxygen)
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
- more bonds to oxygen (see carbon)
$\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Reduction is (with examples):

- a gain of electrons (RIG)

$$
: \ddot{\mathrm{C}}:+\mathrm{e}^{-} \rightarrow: \ddot{\mathrm{C}} \mathrm{l}^{-}
$$

- a less positive oxidation number (more negative) ..

$$
\underset{\text { ox\# }: 0}{: \mathrm{Cl}:}+\mathrm{e}^{-} \rightarrow \underset{\text { ox\# }}{: \mathrm{Cl}:-1}
$$

- a gain of hydrogen atoms (see carbon)
$\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{4}+\mathrm{O}_{2}$
- the loss of oxygen atoms (see carbon)
$\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{4}+\mathrm{O}_{2}$
- the loss of bonds to oxygen (see carbon)
$\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{4}+\mathrm{O}_{2}$

HOW TO DETERMINE OXIDATION NUMBERS

The determination of the oxidation number (or oxidation state) of chemical compounds can be made by following a few simple rules.

1. The oxidation numbers of an atom (an element, e.g., Fe) or the atoms in a neutral molecule must add up to zero.
2. If an atom (Cl^{-}) or molecule is ionic its oxidation number must add up to its overall charge. $\mathrm{Cl}^{-}=-1$
3. Alkali metal atoms (Group I) have an oxidation number equal to +1 within compounds. Alkali earth atoms (Group II) have an oxidation number of +2 within compounds.
4. All halogens in compounds have a -1 oxidation number.
5. Hydrogen is always assigned $\mathrm{a}+1$ oxidation number in compounds.
6. Oxygen is assigned an oxidation number of -2 in compounds.

Examples:

What is the oxidation numbers for all the atoms in $\mathrm{CH}_{3} \mathrm{OH}$
A) Using Rules 5 and 6 hydrogen is +1 and oxygen is -2 .
B) Using Rule 1:4H = +4 and 1O $=-2$; therefore C must be -2 because all the oxidation numbers must add to zero:

$$
\begin{aligned}
& 4 \mathrm{H}+1 \mathrm{O}+1 \mathrm{C} \\
& (+4)+(-2)+(-2)=0
\end{aligned}
$$

Oxidation numbers for carbon atoms can also be determined as follows:
(a) Carbon oxidation numbers: each $\mathrm{C}-\mathrm{C}=\mathbf{0}, \mathrm{C}-\mathrm{H}=-1$ and each $\mathrm{C}-\mathrm{O}=+1$ (b) Add them up to determine the oxidation number of the carbon atom.

What are the oxidation numbers for the carbons in the following compounds?

Try these:
CH_{4}
carbon is: -4
CO_{2}
+4
$\mathrm{CH}_{3} \mathrm{OH}$
-2

