STEPS FOR DRAWING LEWIS STRUCTURES

1. Given the molecular formula, add up the valence electrons in the atoms.

Example: $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \quad 2(4)+4(1)+1(6)=1$
Note: In the case of an ion if it has a "+" charge subtract that number from the total valence electrons. If it has a "-" charge, add that number to the total valence electrons. Example: $\mathrm{NH}_{4}{ }^{+}$ has 8 valence electrons $(5+4-1)$ and NO_{3} has 24 valence electrons $(5+18+1)$.
2. Arrange the atoms with one or two central atoms and the others around it.
a. H atoms are always on the outside because they always only have 1 bond.
b. O atoms are usually on the outside (not central) unless combined with H like $\mathrm{H}_{2} \mathrm{O}$
c. C atoms are always a central atom

3. Connect the atoms with lines (bonds) to the central atom.

4. Subtract the bonded electrons (2 per line) from the total valence electrons: $18-6(2)=6$
5. Place these extra electrons around outside atoms until they have a complete octet, then put the remainder on inside atoms. In this case, put the 4 electrons around the oxygen atom and two electrons on one carbon atom. Always place electrons around atoms in pairs.

6. Count electrons around each atom to be sure there is a complete octet, except for H which only has a duet. One of the carbon atoms does not have a complete octet.
7. If one or more of the central atoms do not have a complete octet then use some of the non-bonding electron pairs to make a bonding pair (i.e., make multiple bonds) so that that all atoms end up with complete octets.

8. Recount electrons around atoms to be sure all have a complete octet. Also count bonding and nonbonding electrons and make sure they equal the total number of valence electrons you started with. All atoms have complete octets.

bonding electrons $=$	14
lone pairs $=$	$\underline{4}$
total $=$	18

9. The Lewis structure is finished and it is correct!
10. Some other considerations are the usual bonding patterns for various elements:
a. H always has 1 bond and never any lone pairs. It only has a duet of electrons.
b. C always has 4 bonds. They can be 4 single, 1 double and 2 single, 1 triple and 1 single. Carbon is ALWAYS a central atom and NEVER has any lone pairs.
c. F always has 1 bond and 3 lone pairs and is ALWAYS an outside atom.
d. Cl, Br and I usually have 1 bond and 3 lone pairs but can have other bonding arrangements depending on the compound.
e. O usually has 2 bonds and 2 lone pairs. The two bonds can be 2 single bonds or 1 double bond. It is usually an outside atom.
f. N usually has 3 bonds and 1 lone pair. The three bonds can be $3 \backslash 2$ single bonds or 1 double and 1 single bond or 1 triple bond. It is usually an outside atom.

SUMMARY OF VSEPR MODEL

Molecular Polarity

Examples of non-polar molecules

	Type		Cancellation of Polar Bonds	Example
Linear molecules with two identical bonds	$\mathrm{B}-\mathrm{A}-\mathrm{B}$		CO_{2}	
Trigonal planar molecules with three identical bonds				

Examples of polar molecules

| Shape | |
| :--- | :--- | :--- |
| Linear molecules
 with different bonds
 Trigonal planar molecules
 with different bonds | polar bonds do not cancel |

