### STEPS FOR DRAWING LEWIS STRUCTURES

1. Given the molecular formula, add up the valence electrons in the atoms.

Example:  $C_2H_4O$  2(4) + 4(1) + 1(6) = 1<u>Note:</u> In the case of an ion if it has a "+" charge subtract that number from the total valence electrons. If it has a "-" charge, add that number to the total valence electrons. Example:  $NH_4^+$ has 8 valence electrons (5 + 4 - 1) and  $NO_3^-$  has 24 valence electrons (5 + 18 + 1).

- 2. Arrange the atoms with one or two central atoms and the others around it.
  - a. H atoms are always on the outside because they always only have 1 bond.
  - b. O atoms are usually on the outside (not central) unless combined with H like H<sub>2</sub>O
  - c. C atoms are always a central atom



3. Connect the atoms with lines (bonds) to the central atom.



- 4. Subtract the bonded electrons (2 per line) from the total valence electrons: 18 6(2) = 6
- 5. Place these extra electrons around outside atoms until they have a complete octet, then put the remainder on inside atoms. In this case, put the 4 electrons around the oxygen atom and two electrons on one carbon atom. Always place electrons around atoms in pairs.



- 6. Count electrons around each atom to be sure there is a complete octet, except for H which only has a duet. One of the carbon atoms does not have a complete octet.
- 7. If one or more of the central atoms do not have a complete octet then use some of the non-bonding electron pairs to make a bonding pair (i.e., make multiple bonds) so that that all atoms end up with complete octets.



8. Recount electrons around atoms to be sure all have a complete octet. Also count bonding and nonbonding electrons and make sure they equal the total number of valence electrons you started with. All atoms have complete octets.

> bonding electrons = 14 lone pairs =  $\frac{4}{18}$ , the same as the valence electrons.

9. The Lewis structure is finished and it is correct!

10. Some other considerations are the usual bonding patterns for various elements:

- a. H always has 1 bond and never any lone pairs. It only has a duet of electrons.
- b. C always has 4 bonds. They can be 4 single, 1 double and 2 single, 1 triple and 1 single. Carbon is ALWAYS a central atom and NEVER has any lone pairs.
- c. F always has 1 bond and 3 lone pairs and is ALWAYS an outside atom.
- d. Cl, Br and I usually have 1 bond and 3 lone pairs but can have other bonding arrangements depending on the compound.
- e. O usually has 2 bonds and 2 lone pairs. The two bonds can be 2 single bonds or 1 double bond. It is usually an outside atom.
- f. N usually has 3 bonds and 1 lone pair. The three bonds can be 3\2 single bonds or 1 double and 1 single bond or 1 triple bond. It is usually an outside atom.

## SUMMARY OF VSEPR MODEL



BONDING ELECTRON GROUPS (Molecular Geometry)

# Molecular Polarity



### Examples of non-polar molecules

|                                                      | Туре  | Cancellation<br>of Polar Bonds | Example         |
|------------------------------------------------------|-------|--------------------------------|-----------------|
| Linear molecules with two identical bonds            | В—А—В | <b>←</b> + + <b>&gt;</b>       | CO <sub>2</sub> |
| Trigonal planar molecules with three identical bonds |       | AX+X                           | SO <sub>3</sub> |
| Tetrahedral molecules with four identical bonds      |       | t x                            | CH <sub>4</sub> |

### Examples of polar molecules

| Shape                                              | polar bonds do not cancel | EXAMPLE          |
|----------------------------------------------------|---------------------------|------------------|
| Linear molecules<br>with different bonds           | <b>↔ +&gt;</b>            | O=C=S            |
| Trigonal planar molecules with different bonds     | **                        | F<br>C=O<br>F    |
| Tetrahedral molecules<br>with different bonds      | <++                       | н<br>F—¢–н<br>Н  |
| Trigonal pyramid molecules<br>with identical bonds | s ∠t×                     | NH <sub>3</sub>  |
| Bent molecules<br>with identical bonds             | $\sim$                    | H <sub>2</sub> O |
|                                                    |                           |                  |