Use your Scantron to answer questions 143. Each answer is worth 2 pt. There is only one answer per question unless it states otherwise.

Section 9.1 Acids and Bases - Definitions

- 1. (9.1) What kind of taste do carboxylic acids have?
 - A) sweet
- B) sour
- C) fruity
- D) slippery
- E) salty

Use these answers for questions 2-4

- C) neutral
- D) alcohols

- A) acid(s) B) base(s)

- E) water

2. (9.1) (is) are compounds that donate a H⁺ in water.

- 3. (9.1) (is) are neutralized by an acid.
- 4. (9.2) HCl is the found in our stomachs.

Section 9.2 Strong Acids and Bases and Neutralization Reactions.

- 5. (9.2) is a strong acid.
- 6. (9.2) ______ is a strong base.
- 7. (9.4) is a weak acid.
- 8. (9.4) _____ is a weak base.
- Use these answers for Ouestions 5-8.
- A) ammonia
- B) acetic acid
- C) nitric acid
- D) magnesium hydroxide

9. (9.2) Which one of these reactions is an acid-base neutralization reaction?

A)
$$OH + NaOH B)$$
 $OH + NaOH B)$ O

Complete and balance the following neutralization reaction.[include (s), (l), (g), (aq) as appropriate] (6 pt)

 $HHr(\omega q) + Ca(OH)_2(s) -$

The following data was obtained from titration of 4.00 mL vinegar with 0.2403 M NaOH to determine the molar and % concentration of acetic acid. Complete the calculations indicated using the following data.

*		_
	TRIAL 1	
Initial NaOH level in buret	0.00 mL	
Final NaOH level in buret (End point)	19.19 mL	
(2 pt) Volume (mL) of NaOH used (Show calculation)		
(2 pt) Volume in Liters of NaOH used (Show calculation)		
(4 pt) Moles of NaOH used in titration (Show calculation)		mole NaOH
(2 pt) Moles of HC ₂ H ₃ O ₂ neutralized by NaOH		mole of HC ₂ H ₃ O ₂
(6 pt) Molarity of HC ₂ H ₃ O ₂ (Show calculation)		M HC ₂ H ₃ O ₂
(4 pt) Grams of $HC_2H_3O_2$ (molar mass = 60.06 g/mol) (Show calculation)		g HC₂H₃O₂
(4 pt) Percent (m/v) HC ₂ H ₃ O ₂		% HC₂H₃O₂

(Show calculation)

Section 9.3 Chemical Equilibrium

10. Considering LeChateliers principle which of the following statements (the underlined portion) is correct?

Use the following equilibrium equation (the one that occurs in blood). $CO_2 + H_2O \longrightarrow H_2CO_3 \longrightarrow H^+ + HCO_3$

$$CO_2 + H_2O \implies H_2CO_3 \implies H^+ + HCO_2$$

- A) Metabolic acidosis causes a decrease in CO₂.
- B) Increased respiration (panting) causes a decrease in CO₂ which in turn increases H⁺. This is called respiratory alkalosis.
- C) When CO₂ increases, an increase in H⁺ results, and in turn pH increases. This is called respiratory alkalosis.
- D) If HCO₃ increases then H⁺ decreases and CO₂ increases, thereby resulting in alkalosis.
- 11. The following reaction is exothermic. Which of the following will drive the reaction to the right?

$$CH_4(g) + 2 O_2(g) \leftrightarrow CO_2(g) + 2 H_2O(g) + heat$$

- A) A decrease in O₂
- B) A decrease in CH₄ C) The removal of CO₂
- D) The addition of CO₂

Section 9.4 Weak Acids and Bases

12. (9.4) What is the conjugate base of OH-?

- A) H_3O^+ A) H_2O
- B) O-
- C) O_2 D) O^{-2}

13. (9.4) What is the conjugate acid of OH?

- A) H₃O⁺
- A) H2O
- B) O-
- C) O_2 D) O^{-2}

14. (9.4) In this equilibrium equation, HCO₃ is an A) Acid

- B) Base
- C) Conjugate Acid
- D) Conjugate Base

 $HCO_3^- + H_2O$ $CO_3^2 + H_3O^+$

Section 9.5 pH and the pH Scale

Use these answers for questions 15-19 B) electrolyte A) aqueous

- C) neutral
- D) acidic
- E) basic

15. (9.5) In solutions the pH is equal to 7.

16. (9.5) A solution of pH 8 is more _____ than a solution of pH 5.

17. (9.5) In solutions the pH is less than 7

18. (9.5) In solutions $[OH^-]$ is less than $[H_3O^+]$.

19. (9.5) A solution that contains $[H_3O^+] = 1.2 \times 10^{-8}$ is _____

20. (9.5) If the pH of an aqueous solution increases the molar concentration of

- A) hydronium ion decreases.
- B) hydronium ion increases.
- C) hydroxide ion decreases.
- D) there is no change in the hydronium or hydroxide ion concentration.

Use the following equation for Questions 21 and 22.

 $pH = -log[H_3O^+]$ and $[H_3O^+] = 10^{-pH}$

21. (9.5) What is the pH of a solution that has a $[H_3O^+] = 1.2 \times 10^{-3}$?

- A) 1.20
- B) 2.92
- C) 11.08
- D) 12.80

22. (9.5) What is the $[H_3O^+]$ concentration in a solution that has a pH = 2.34?

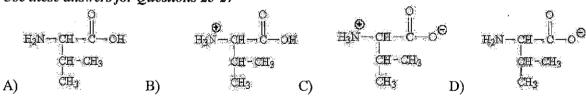
- A) 2.3×10^{-3} M
- B) 4.6×10^{-3} M
- C) 2.2×10^{-12} M
- D) 1.2×10^{1} M

Section 9.6 pKa

Consider the following equilibrium for HCO_3 whose pKa = 10.32.

 $HCO_3 + H_2O$ $CO_3^2 + H_3O^+$

23. (9.6) Which form will predominate when the pH of the solution is at blood pH?


- A) HCO3-
- B) CO₃-2
- C) H₂CO₃
- D) H₂O
- E) All of these

Section 9.7 Amino Acids: Common Biological Weak Acids

24. Under what conditions can amino acids be found in an un-ionized form?

- a. at low pH
- b. at pH = 7
- c. at high pH
- d. amino acids are never found in un-ionized form

Use these answers for Questions 25-27

For the amino acid Val (pI = 6.0) what species exists at each of the following pH's?

- 25. pH = 1.2
- 26. pH = 11.2
- 27. pH = 6.0

28. Which of the following functional groups of an amino acid would be ionic at high pH?

$$E$$
) —CH₂—

Section 9.8 Buffers and Blood: The Bicarbonate Buffer System

Consider the following equilibrium for HCO_3 - whose pKa = 10.32.

$$HCO_3^- + H_2O \longrightarrow CO_3^{2-} + H_3O^+$$

- 29. At which pH is HCO₃ the best buffer? A) 2.0
- B) 7.0 C) 9.0
- D) 10.0
- E) 12.0

30. Which of the following aqueous solutions would be the best buffer?

- A) NaHCO₃(aq)
- B) NaF(aq)
- C) Equal amounts H₂CO₃ and NaHCO₃
- D) HF(aq)
- E) HCl(aq)

31. At what pH are amino acids the best buffers?

- A) pH=pKa
- B) pH<pI
- C) pH=pI
- D)pH>pI

Use the following equilibrium equation (the one that occurs in blood) for question 29 below. $CO_2 + H_2O \longrightarrow H_2CO_3 \longrightarrow H^+ + HCO_3$

this patient's condition?		
		a
 A) Metabolic acidosis 	anent	<u>Normal</u>
B) Respiratory acidosis	pH: 7.85	7.33 - 7.43
C) Metabolic alkalosis	pCO ₂ : 27 mm Hg	38 - 50 mm Hg
D) Respiratory alkalosis	HCO. 1 16 mmol/L	22 - 28 mmol/L

(12 pt) A patient who weighs 155 lb is prescribed a medication three times a day that comes in a 0.4% suspension. If the daily dose is 1.0 g/kg/day how many teaspoons are given each time the medicine is administered? Useful information: 1 kg = 2.2 lb and 1 tsp = 5 mL

٠,