Chem	51, Sp	ring	2015
Exam	3 (Chp	8)	

Use your Scantron to answer Questions 1-32. There is only one answer for each Question. Questions are 2 pt each.

CHP 8.1 Solutions are Mixtures

- 1. A saturated solution:
 - A) contains as much solvent as it can hold
 - B) contains no double bonds
 - C) contains dissolved solute in equilibrium with undissolved solid
 - D) will rapidly precipitate if a seed crystal is added.
- 2. Of the following, which can serve as the solvent in a solution?
 - A) A liquid
- B) A solid
- C) A gas
- D) All of the above
- 3. Which of the following is considered a colloid?
 - A) 0.9% NaCl
- B) mayonnaise
- C) vinegar (5% acetic acid)
- D) water
- E) 5% glucose
- 4. Which of the following statements best describes the phrase "like dissolves like"?
 - A) The only true solutions are formed when water dissolves a polar solute.
 - B) A solvent and a solute with similar intermolecular forces will easily make a solution.
 - C) The only true solutions are formed when water dissolves a nonpolar solute.
 - D) A solvent will dissolve a solute that has a similar mass.

CHP 8.2 Formation of Solutions

- 5. Which of the following would be most soluble in water?
 - A) $CH_3(CH_2)_6CH_3$
- B) CH₃(CH₂)₆OH
- C) CH₃(CH₂)₄OH
- D) CH₃(CH₂)₃OH
- E) CH₃(CH₂)₂OH
- 6. Which of the following has the **LEAST** effect on the solubility of a **solid** in a liquid solvent?
 - A) Temperature
- B) Pressure
- C) Polarity of the solvent
- D) Polarity of the solute
- 7. Identify the solute in a solution that is 1.4% NaCl in water.
 - A) Na⁺
- B) Cl
- C) NaCl
- D) H₂O
- E) Both Na⁺ and Cl⁻

- 8. A saturated solution:
 - A) contains as much solvent as it can hold
 - B) contains no double bonds
 - C) contains dissolved solute in equilibrium with undissolved solid
 - D) will rapidly precipitate if a seed crystal is added.
- 9. Given that the solubility of sodium acetate (Molar mass = 82 g/mol) is 76 grams per 100 grams of water. Which of the following solutions would be unsaturated? *Hint: If needed, convert to g/100 g water to figure this out.*
 - A) 90 g of sodium acetate dissolved in 100 g of water
 - B) 450 g of sodium acetate dissolved in 500 g of water
 - C) 240 g of sodium acetate dissolved in 300 g of water
 - D) 100 g of sodium acetate dissolved in 200 g of water
- (6 pt) Explain <u>what happens</u> to the amount of oxygen in the blood stream and <u>why this happens</u> when a person receives oxygen from a breathing device.

Page 2 of 5

CHP 8.3 Chemical Equations for Solution Formation
10. A water solution of acetic acid, vinegar, barely lights a light bulb (low conductivity). This means that vinegar is a(n):
A) weak electrolyte B) strong electrolyte C) non-electrolyte D) semi-electrolyte
11. Which of the following would make a non-electrolyte solution?
A) $HCl(aq)$ B) $C_6H_{12}O_6(aq)$ C) $Na_2CO_3(aq)$ D) $KCl(aq)$
12. Which of the following would make a strong electrolyte solution?
A) 0.9% NaCl B) mayonnaise C) vinegar (5% acetic acid) D) water E) 5% glucose
10 A
13. Ammonia makes a weak electrolyte solution with water. The equation is $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$
The solution contains A) NH_3 B) H_2O C) NH_4^+ D) OH E) All of these
Match the numbers to the appropriate blanks in the sentences that ask for the number of ions in solutions of each ionic
** *
compound.
A) 1 B) 2 C) 3 D) 4
$(A) \cap (A) $
A magnesium bromide solution producesmagnesium ion(s) andbromide ion(s) per
mole of magnesium bromide. Question 14 Question 15
Al ₂ (CO ₃) ₃ producesaluminum ion(s) andcarbonate ion(s) per mole of Al ₂ (CO ₃) ₃
Ouestion 16 Ouestion 17

Write the equation (include the symbol for solid, liquid, gas or aqueous) and draw a diagram showing hydration of the
ions when solid FeCl ₃ dissolves in water.
(2 pt) What is the name of the intermolecular attraction when this happens?
(6 pt) Write the equation here:
(10 pt) Draw the diagram here:
CHP 8.4 Concentrations
(8 pt) Calculate the molarity of a solution prepared by dissolving 14.7 g of Ca(NO ₃) ₂ in enough water to make 750. mL of solution. $[Ca(NO_3)_2 \text{ molar mass} = 164 \text{ g}]$
What is the concentration in percent (m/v), ppm (m/v) and ppb (m/v) of a solution that contains 45 mg of lead in 1750 mL of solution? (6 pt) % calc:
(6 pt) ppm calc:
(6 pt) ppb calc:
18. How many equivalents are there in a solution that contains 4.25 moles of K^{1+} ? A) 4.25 Eq B) 8.50 Eq C) 2.13 Eq D) 1.00 Eq
19. The physicians order reads: Zantac 150 mg. The label reads: Zantac 100 mg / 5ml. How many mL should be given?
A) 7.5 mL B) 15 mL C) 12.5 mL D) 11.25

Cı	iem 51, Spring 2015		1	Exam 8 (continued)	rage 40
A	Ringer's solution fo mL of Ringer's how (8 pt) equivalents			ncentration of 155 mEq Cl ⁻ per liter. If a pat ient in	ient receives 1250
	(4 pt) moles				
	(4 pt) grams				
C)		NA CONO	a a 1	n	
<u>C</u> 1	HP 8.5 Dilution (C1). If after 3 serial dilu 0.015 M, what was	itions, where one	e mL is diluted t	to 10 mL each time, and the final concentra	ation of the solution is
	A) 0.0050 M	B) 15 M	C) 0.045M	D) 0.000015M	
21	. Calculate the volum A) 0.0682 mL	me (in mL) of a 2 B) 68.2 mL	2.75 M solution C) 0.0330 r	that must be used to make 1.25 L of a 0.15 mL D) 33.0 mL	0 M solution.
20	NVI de de centre	(alataina dibaa di	lating 125 mJ af 2 50 M NaOJI ta 575 mJ	o.
22	A) 0.272 M	ty of the solution B) 0.543 M	c) 1.84 M	luting 125 mL of 2.50 M NaOH to 575 mL D) 11.5 M	<i>!</i>

CHP 8.6 Osmosis and Diffusion

- 23. When it comes to osmosis through a membrane in an aqueous solution
 - A) The hypotonic solution is the one which has a higher water concentration
 - B) The isotonic solution is one where the solute concentration is greater.
 - C) The hypertonic solution has the higher water concentration.
 - D) The hypertonic solution has the lower solute concentration.
- 24. A raw egg without its shell is enclosed in a membrane. If the egg is then placed in pure water the egg expands.

Which of the following statement correctly explains this observation?...

- A) The egg swelled in the water because the water was hypertonic to the egg.
- B) The egg expaned in the water because the egg was hypertonic to the water.
- C) The egg expanded because electrolytes flowed into the egg from the water.
- D) The egg was hypotonic to the water.
- E) The egg behaved just like a red blood cell in a dehydrated person.

Use these to answer Ouestions 27 and 28 for a patient undergoing hemodialysis

- 25. Which of the following are isotonic to blood?
 - A) 0.9% NaCl and 5% dextrose
 - B) 0.9% dextrose and 5% NaCl
 - C) 0.1% NaCl and 1% dextrose
 - D) 1% NaCl and 10% dextrose
 - E) 0.5% NaCl and 5% dextrose
- 26. An aqueous mixture containing starch (a colloid), NaCl, glucose, and albumin (a colloid) is placed in a dialyzing bag and immersed in distilled water. Which of the following correctly describes the location of the indicated substance after dialysis?
 - A) albumin outside
 - B) sodium chloride inside and outside.
 - C) albumin inside and outside
 - D) water inside only
 - E) starch outside only

. A) hypertonic	B) hypotonic	0	C) isotonic	
, , ,	patient, its solute concentratio	ns are _	to the di	alyzing solution.
28. As the blood re-enters t	he patient, its solute concentra	tions aı	eto the	e dialyzing solution.
CHP 8.7 Transport Acros	s Cell Membranes			
Identify which mechanism	is involved in the passage of th	ie follo	wing molecules or ic	ons across a cell membrane:
A) passive diffusion;	B) facilitated transport;	C)	active transport;	D) endo or exocytosis

29. CO₂

- 30. cholesterol
- 31. Na⁺ (no energy required)
- 32. Cl- (energy required)

PERIODIC CHART OF THE ELEMENTS

1 H 1.00797																1 H 1.00797	2 He
Li	Be											B	Ĉ	Ň	Ő	F	Ne
6.939	9.0122 12											10.811				18.9984 17	
Na 22.9898	Mq											13 AI 26.9815	Si 28.086	15 P 30.9738	S 32.064	ČI 35.453	18 Ar 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 39.102	Ca	Sc 44.956	47.90	V 50.942	51.996	MN 54.9380	⊢e 55.847	58.9332	N1 58.71	CU 63.54	∠n 65.37	Ga	Ge 72.59	AS 74.9216	Se 78.96	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr 87.62	Y 88.905	Zr	Nb	Mo 95.94	1 C	Ru	Rh	Pd 106.4	Ag 107.870	Cd	In 114.82	Sn 118.69	Sb 121.75	1 e	126.904	Xe
55	56	<u>∗</u> 57	72	_73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ιa	W	Re	Οs	Ir	Pt	Au	Hg		Pb	Bi	Pol	Αt	Rn
132.905	137.34 88	138.91	178.49	180.948	183.85	186.2	190.2	192.2	195.09	196.967	200.59	204.37	207.19	208.980	(210)	(210)	(222)
87		∮89	104 D f	105 Dh	106 C	107 Dh	108 Lla	109 k# +	110	111	112 ?						
Fr	Ra	AC (227)	(261)	(262)	Sg	Bh	HS (265)	IVI L (266)	(271)	(272)	(277)						

* Lanthanide Series

Ce	Pr 140.907	Nd 144.24	Pm (147)	Sm 150.35	Eu 151.96	Gd	Tb 158.924	Dy	Ho 164.930	Er	Tm 168.934	Yb 173.04	Lu 174.97
‡Actinide Series													
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	ΝD	Pu	Αm	Cm	Bk	Cf	Es	Fm	Md	No	∣Lr ∣
232.038	(231)	238.03	(237)	[242]	(243)	(247)	(247)	(249)	(254)	(253)	(256)	(256)	(257)

Electronegativity Chart of the Elements

1A 7A 8A 1 17 18

18 н -Current American Usage-5A 6A Н 2.1 2.1 2 + -IUPAC Notation-14 15 16 Li Be O B C 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Mg Αl Si P Cl 3**B** 4B 5**B** 6**B** -8B -2B 7B 1B 0.9 1.5 2.1 2.5 3.0 1.2 5 9 10 11 12 1.8 Fe Cu K Ca Ti Cr Mn Co Ni Zn Ga Ge As Br Sc Se 8.0 1.0 1.3 1.5 1.6 1.6 1.5 1.8 1.8 1.8 1.9 1.6 1.6 1.8 2.0 2.4 2.8 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Ι 8.0 1.0 1.3 1.7 2.5 1.4 1.6 1.8 1.9 2.2 2.2 2.2 1.9 1.7 1.8 1.9 2.1 Cs Hf Ta W Os Pt Au Ti Pb Bi Αt Ba La * Re Ir Hg Po 1.9 1.8 0.7 0.9 1.3 1.5 1.7 1.9 2.2 2.2 2.2 2.4 1.9 2.0 2.2 1.1 1.8 Fr Ra Ac† Rf Db Sg Bh Hs Mt ‡ * Lanthanide Series † Actinide Series 0.9 1.1

‡ IUAPC has not yet named

these elements.

1.1	1.1	1.2	 1.2	 1.1		 1.2	1.2	1.2	1.1	
Th 1.3	Pa 1.5	บ 1.7			Bk 1.3					

USEFUL CONVERSION FACTORS AND RELATIONSHIPS

Length

```
SI unit: meter(m)

1 km = 0.62137 mi

1 mi = 5280 ft

= 1.6093 km
```

1 m = 1.0936 yd

1 in. = 2.54 cm (exactly)

1 cm = 0.39370 in. $1 \text{ Å} = 10^{-10} \text{ m}$

Mass

Temperature

SI unit: Kelvin (K)
0 K = -273.15°C
= -459.67°F
K = °C + 273.15
°C =
$$\frac{5}{9}$$
 (°F - 32°)
°F = $\frac{9}{5}$ °C + 32°

Energy (derived)

Pressure (derived)

Volume (derived)

```
SI unit: cubic meter (m^{S})

1 L = 10^{-3} m<sup>3</sup>

= 1 \text{ dm}^{3}

= 10^{3} cm<sup>3</sup>

= 1.0567 qt

1 gal = 4 qt

= 3.7854 L

1 cm<sup>3</sup> = 1 mL

1 in<sup>3</sup> = 16.4 cm<sup>3</sup>
```

SCRATCH