\qquad
Mark your scantron to answer Questions 1-25.. Each question has only one answer unless otherwise stated. Each multiple choice question is worth 2 pt.

CHP 9 (Acids and bases)

Use the following to answer Questions 1 and 2. Mark all that apply.
A) produces $\mathrm{H}_{3} \mathrm{O}^{+}$in water
B) has a sour taste
C) has a slippery, soapy feel
D) turns blue litmus blue
E) pH is less that 7

1. (9.1) Which one is characteristic of an acid? Mark all that apply.
2. (9.1) Which one is characteristic of a base? Mark all that apply.
3. (9.2) Which one of the following is a strong acid? Mark all that apply
A) HCl
B) $\mathrm{H}_{2} \mathrm{SO}_{4}$
C) HF
D) NaOH
E) $\mathrm{H}_{2} \mathrm{O}$
4. (9.2) Which of the following is a neutralization reaction?
A) $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrows \mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
B) $\mathrm{HF}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+2 \mathrm{NaF}$
C) $2 \mathrm{HCl}+\mathrm{Zn} \rightarrow \mathrm{H}_{2}+\mathrm{ZnCl}_{2}$
D) $3 \mathrm{NaOH}+\mathrm{AlCl}_{3} \rightarrow 3 \mathrm{NaCl}+\mathrm{Al}(\mathrm{OH})_{3}$

For Questions 5-9 match the following answers with the carboxylic acids shown.
A) Formic acid
B) acetic acid
D) citric acid
E) pyruvic acid AB) lactic acid
5.

6.

7.

8.

9.

10. (9.3) Consider the following equilibrium that occurs in blood:
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$

If the following conditions exist:

$$
\begin{array}{rlrl}
\mathrm{P}_{\mathrm{CO} 2} & =26 \mathrm{~mm} \mathrm{Hg} & & (\text { normal }=38-50 \mathrm{~mm} \mathrm{Hg}) \\
\mathrm{HCO}_{3}{ }^{=}=15 \mathrm{mmol} / \mathrm{L} & & (\text { nomal }=22-28 \mathrm{mmol} / \mathrm{L}) \\
\mathrm{pH} & =7.81 & & (\text { nomal }=7.33-7.43)
\end{array}
$$

The patients has:
A) Respiratory Alkalosis
B) Metabolic Alkalosis
C) Repiratory Acidosis
D) Metabolic Acidosis
11. (9.3) Indicate which of the substances occur in higher amount in the following equilibrium when acid is added. Mark all that apply.

$$
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

A) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
B) $\mathrm{H}_{2} \mathrm{O}$
C) $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$
D) $\mathrm{H}_{3} \mathrm{O}^{+}$
E) all are higher
12. (9.4) Identify the Bronsted-Lowry acid/conjugate base pair in the following reaction.

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrows \mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

A) $\mathrm{H}_{2} \mathrm{O} / \mathrm{HCO}_{3}{ }^{-}$
B) $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{HCO}_{3}{ }^{-}$
C) $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{CO}_{3}$
D) $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{3} \mathrm{O}^{+}$
E) $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{HCO}_{3}{ }^{-}$
13. (9.5) Which of the following statements correctly describes the hydronium-hydroxide balance in the given solution?
A) In acids, $\left[\mathrm{OH}^{-}\right]$is less than $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
B) In bases, $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
C) In neutral solutions, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{O}\right]$.
D) In bases, $\left[\mathrm{OH}^{-}\right]$is less than $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.
E) In bases, $\left[\mathrm{OH}^{-}\right]$is less than $\left[\mathrm{H}_{2} \mathrm{O}\right]$.
(9.5) For a solution that has a HCl conc. of $7.7 \times 10^{-10} \mathrm{M}$:
$(2 \mathrm{pt})$ Is this an acidic or basic solution?

$(2 \mathrm{pt})$ What is the $\mathrm{pH} ?$	(2 pt) What is the $\mathrm{pOH} ?$	(2) What is the $\left[\mathrm{H}^{+}\right]$	(2 pt) What is the $[\mathrm{OH}] ?$

A typical titration curve for a weak acid looks like this. The generic formula for a monoprotic acid is represented by "HX". What is(are) the major species present where the arrows are along this titration curve? Use these to answer
Questions 14-15 (the arrows):
A) HX
B) X^{-}
C) equal HX and X^{-}
D) neither HX nor X^{-}

17. Using the titration curve above, identify the acid by it's pK_{a}
A) $\mathrm{HCHO}_{2}, \mathrm{pKa}=3.74$
B) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{pKa}=4.76$
C) $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{pKa}=6.35$
D) $\mathrm{HCO}_{3}{ }^{-}, \mathrm{pKa}=9.3$
18. (9.6) Which of the following is the strongest acid?
A) nitrous acid, $\mathrm{pKa}=3.35$
B) carbonic acid, $\mathrm{pKa}=6.35$
C) formic acid, $\mathrm{pKa}=3.74$
D) acetic acid, $\mathrm{pKa}=4.76$
19. (9.7) What functional groups are found in all amino acids? Mark more than one answer.
A. carboxylic acid
B. aromatic
C. amide
D. amine
E. alcohol
20. (9.7) Substances that can act both as an acid and as a base are called
A) neutral
B) amphiphatic
C) indicators
D) amphoteric
$\mathrm{E})$ isoteric
21. (9.7) The isoelectric point of an amino acid is defined as:
A) the pH at which the amino acid exits in the zwitterion form
B) the pH at which it exists in the basic form
C) the pH at which it exists in the acidic form
D) the pH equals the pKa
22. (9.7) Which of the following represents the zwitterion form of the amino acid valine?
A)

B)

C)

D)

(9 pt) (9.7) Draw the major structures of valine that would be present at the following pH 's (use the table of pI's)

$\mathrm{pH}=2.4$	$\mathrm{pH}=6$	$\mathrm{pH}=9.9$

23. (9.8) Considering this equilibrium which occurs in blood, $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$

Which of the following would be the cause of metabolic alkalosis?
A) Hyperventilation where the level of CO_{2} in blood decreases rapidly.
B) Ketoacidosis, that occurs in starvation or diabetes, where blood pH decreases.
C) When holding ones breath or with impaired breathing where the level of CO_{2} in blood increases.
D) When ingesting huge amounts of alkali for an acid stomach which in turn causes blood levels of pH to increase.
24. (9.8) Which of the following could be a buffer?
A) $\mathrm{HCl}+\mathrm{NaCl}$
B) $\mathrm{HF}+\mathrm{NaF}$
C) $\mathrm{NaF}+\mathrm{HCl}$
D) $\mathrm{NaCl}+\mathrm{HF}$
(6 pt) Calculate the number of tablets needed per dose for a drug that is 35 mg per tablet and is administered to a 35 lb child once a day at $5 \mathrm{mg} / \mathrm{kg}$ body weight.
25. (9.8) In a buffer system of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{KHCO}_{3}\left(\mathrm{pK}_{\mathrm{a}}=9.3\right)$
A) the $\mathrm{K}_{2} \mathrm{CO}_{3}$ neutralizes added acid.
B) the $\mathrm{K}_{2} \mathrm{CO}_{3}$ neutralizes added base.
C) the $\mathrm{K}_{2} \mathrm{CO}_{3}$ is not necessary.
D) the KHCO_{3} neutralizes added $\mathrm{H}_{2} \mathrm{O}$.
(9.8) Answer the following questions about the buffer system in Question 25.
(3 pt) What is the purpose of this buffer?
(4 pt) What should be the concentrations (in molarity) of the two chemicals that are combined to create this buffer?

What are the acid/conjugate base and base/conjugate acid in this buffer system?
(2 pt) Ackd/conj. Base:
(2 pt) Base/con,. Acid:

Write the chemical equations for what happens when an acid $\left(\mathrm{H}^{+}\right)$or a base $\left(\mathrm{OH}^{-}\right)$is added to this buffering system. (2 pt) Added acid:
(2 pt) Added base:

A titration analysis was performed where 5.00 mL of vinegar was titrated with 0.1994 M NaOH solution. Calculate the concentration ($\mathrm{M}, \%$) of acid (HAc) in the vinegar using the following data from the titration.

	TRIAL 1
Initial NaOH level in buret	0.51 mL
Final NaOH level in buret (End point)	44.45 mL
(2 pt) Volume (mL) of NaOH used (Show calculation)	
(2 pt) Volume in Liters of NaOH used (Show calculation)	

(4 pt) Moles of NaOH used in titration \qquad mole NaOH (Show calculation)
(2 pt) Moles of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ neutralized by NaOH \qquad mole of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (Show calculation)
(6 pt) Molarity of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
(Show calculation)
$(4 \mathrm{pt}) \mathrm{Grams}$ of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}($ molar mass $=60.06 \mathrm{~g} / \mathrm{mol})$ \qquad (Show calculation)
\qquad $\% \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

SOME USEFUL EQUATIONS USED IN CHEMICAL CALCULATIONS.

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& {\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}} \\
& {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}}
\end{aligned}
$$

USEFUL CONVERSION FACTORS AND RELATIONSHIPS

Length
SI unat: meterim)
$1 \mathrm{~km}=0.62137 \mathrm{mi}$
$1 \mathrm{mi}=5280 \mathrm{ft}$

$$
=1.6093 \mathrm{~km}
$$

$1 \mathrm{~m}=1.0936 \mathrm{yd}$
$1 \mathrm{in}=2.54 \mathrm{~cm}$ (exactly)
$1 \mathrm{~cm}=0.39370 \mathrm{in}$.

$$
1 \hat{A}=10^{-10} \mathrm{~m}
$$

Mass
SI umit: kikgrsmikg)
$1 \mathrm{~kg}=2.2046 \mathrm{lb}$
$1 \mathrm{~b}=453.59 \mathrm{~g}$
$=16 \mathrm{cz}$
$1 \mathrm{amu}=1.6605402 \times 10^{-24} \mathrm{~g}$
Temperature
SI unú: Kekinin (K)
$0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$
$=-459.67^{\circ} \mathrm{F}$
$K={ }^{\circ} \mathrm{C}+273.15$
${ }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32^{\circ}\right)$
${ }^{\circ} \mathrm{F}=\frac{9}{5}{ }^{\circ} \mathrm{C}+32^{\circ}$

Energy (derived)
SH uzut:/cuze [/I)

$$
\begin{aligned}
1 \mathrm{~J} & =1 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}^{2} \\
1 \mathrm{~J} & =0.2390 \mathrm{cal} \\
& =1 \mathrm{C} \times 1 \mathrm{~V} \\
1 \mathrm{cal} & =4.184 \mathrm{~J} \\
1 \mathrm{eV} & =1.602 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

Pressure (derived)
SI umat: Psccsi(Pas)
$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$ $=1 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}^{2}$
$1 \mathrm{~atm}=101,325 \mathrm{~Pa}$
$=760 \mathrm{~mm}$ $=14.70 \mathrm{lb} / \mathrm{in}^{2}$
$1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
Volume (derived)
SI uazu: cubic materim")
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
$=1 \mathrm{dm}^{3}$
$=10^{3} \mathrm{~cm}^{3}$
$=1.0567 \mathrm{qt}$
$1 \mathrm{gal}=4 \mathrm{qt}$
$=3.7854 \mathrm{~L}$
$1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$
$1 \mathrm{in}^{3}=16.4 \mathrm{~cm}^{3}$

Numbers in parenthesis are mass umbers of most stable or most common isotope
tomic weights corected to conform to the 1963 values of the Commission on Atomic Weights

The group designations used here are the former Chemics Abstract Service numbers

Electronegativity Chart of the Elements

$\begin{array}{r} \mathrm{H} \\ 2.1 \end{array}$													$\begin{gathered} \mathrm{H} \\ 2.1 \end{gathered}$	He
Li	Be										C	N	F	Ne
1.0	1.5										2.5	3.	4.0	--
Na	Mg										Si	P	Cl	Ar
0.9	1.2										1.8	2.	3.0	--
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni		Ge	A	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8		1.8	2.	2.8	--
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd		Sn	Sb	I	Xe
0.8	1.0	1.3	1.4	1.6	1.8	1.9	2.2	2.2	2.2		1.8	1.	2.5	--
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt		Pb	B	At	Rn
0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.2	2.2	2.2		1.8	1.	2.2	--
$\begin{gathered} \mathrm{Fr} \\ 0.7 \end{gathered}$	$\begin{aligned} & \mathrm{Ra} \\ & 0.9 \end{aligned}$	$\begin{gathered} \text { Ac } \dagger \\ 1.1 \end{gathered}$	Rf	Db	Sg	Bh	Hs	Mt	\ddagger		* Lanthanide Series \dagger Actinide Series			

\ddagger IUAPC has not yet named these elements.

Amino Acid Structures

Amino Acid pKa and pI Values

Amino Acid	pK ${ }_{\text {coor }}$	pK $\mathbf{N H}_{4}{ }^{+}$	pKr	pl
	2.35	9.87		6.00
	2.01	9.04	12.48	11.15
	2.02	8.80		5.41
$\mathrm{HO}_{\mathrm{NH}}^{\mathrm{O}} \mathrm{H}_{0}^{\mathrm{oH}}$	2.10	9.82	3.86	2.77
$\underset{\mathrm{HS}_{2} \mathrm{~N}}{ } \mathrm{~S}_{0}^{\mathrm{OH}}$	2.05	10.25	8.00	5.02
	2.10	9.47	4.07	3.22
	2.17	9.13		5.65
	2.35	9.78		5.97
	1.77	9.18	6.10	7.47
	2.32	9.76		5.94
	2.33	9.74		5.98
	2.18	8.95	10.53	9.59
	2.28	9.21		5.74
	2.58	9.24		5.48
	2.00	10.60		6.30
	2.21	9.15		5.68
	2.09	9.10		5.64
	2.38	9.39		5.89
	2.20	9.11	10.07	5.66
$\mathcal{H}_{\mathrm{H}_{2} \mathrm{O}}^{\mathrm{OH}}$	2.29	9.72		5.96

SCRATCH

