CHEM 51, Spring 2016	Name
Exam #8 (Chp 8) SOLUTIONS	(110 points total)
Mark answers on your scantron for Questions 1-27. <u>Mark only</u> worth 2 pt.	<u>y one answer</u> unless directed otherwise. Each question is

(8.1) A 5 gallon tank filled with methane (gas) and a small amount of methyl mercaptan gives a noticeable odor.											
Use these answers for Questions 1 and 2. A) solvent B) solution C) solute D) water											
1. Methyl mercaptan is thein this mixture.											
2. Methane is thein this mixture.											
3. (8.1) Mayonnaise, fog and milk are examples of this.	A) solution										
4. (8.1) Normal saline, Ringers and 5% glucose are examples of this. B) suspension											
5. (8.1) This is a mixture like muddy water where the particles settle out over time. C) colloid											
(8.2) Use these answers for Questions 3 and 6. A) unsaturated B) saturated C) increase D) decrease E) stay the	same										
6. (8.2) A pinch of salt added to a pot of boiling water makes asolution.											
7. (8.2) It the temperature of a solution increases, the solubility of most solid solutes will											
8. (8.2) If the pressure above a solution increases the solubility of a gaseous solute will											
9. (8.2) When a bottle of soda is opened the solubility of the CO_2 s.											
(8.3) (4 pt) Write the balanced equation for NH_4OH , a <u>weak electrolyte</u> , when it dissolves in	n water.										

(8.3) (4 pt) Write a balanced equation for CaCl₂(s), a strong electrolyte, when it dissolves in water.

(8.3) (4 pt) Draw a picture of the hydrated ions of CaCl₂ when it dissolves in water.

(8.3) Select the answer on the right that corresponds to each of the following solubility equations.

11. $NH_3(g) + H_2O \longleftrightarrow NH_4^+(aq) + OH^-(aq)$ B) Weak electrolyte12. $CH_3OH(1) \xrightarrow{H_2O} CH_3OH(aq)$ CH_3OH(aq)	10.	HCl(g) \longrightarrow H ⁺ (aq) + Cl ⁻ (aq)	A) Strong electrolyte
12. CH_3OH (l) $\xrightarrow{H_2O}$ CH_3OH (aq)	11.	$NH_3(g) + H_2O $ $NH_4^+(aq) + OH^-(aq)$	B) Weak electrolyteC) Non-electrolyte
	12.	CH ₃ OH (l) $\xrightarrow{H_2O}$ CH ₃ OH (aq)	

CHEM 51, Spring 2016	EXAM #8 (cont.)	Page 2 of 6
13. (8.3) In Question 9, the solute is	A) totally ionic B) only molecular	C) both ionic and molecular.
14. (8.3) Which cation and anion are p <u>Mark two</u> . (A) K^+ (B) No ⁺	present at the highest concentrations in blo C_{1} = D) PO 3^{2} = E) HCO $-$	ood (extracellular fluid)?
$\mathbf{A} (\mathbf{K}^{*} \mathbf{D}) \mathbf{N} \mathbf{a}^{*} \mathbf{C} (\mathbf{C})$	$(I D) PO_3^{-1} E) HCO_3$	
15. (8.3) How many equivalents are the A) 4.25 Eq B) 8.50 Eq	ere in a solution that contains 4.25 moles C) 2.13 Eq D) 1.00 Eq	of Mg ²⁺ ?
Answer all of the following question	using a 15% aqueous solution of NaCl	
(8.4) (6 pt) How many grams of NaCl	are present in 1.0 L of this solution?	
(8.4) (4 pt) How many <u>moles</u> of NaCl is The molar mass of NaCl is	are there in 1.0 L of this solution? s 22.99+35.45=58.44 g/mol	
(8.4) (4 pt) What is the <u>molarity</u> of Nat	Cl in 1 L of this solution?	
(8.4) (8 pt) What is the Eq/L concentra	ation of Na ⁺ and Cl ⁻ in this solution.	
(8.5) (6 pt) What volume will 1 L of th	nis solution have to be diluted to in order t	to make a 0.90% aqueous solution of NaCl?
(8.5) (6 pt) What is the final % concen	tration of NaCl in a solution that was seri	ally diluted (1.0 mL to 5.0 mL) five times?

EXAM #8 (cont.)

(8.4) (6 pt) What is the ppm concentration of glucose that is 112 mg glucose/dL blood?

16. (8.4) What is the molar mass of calcium chloride? A) 75.53 B) 47.46 C)82.91 D)110.98

17. (8.4) What is the mass of 3.61 moles of Ca?

A) 0.090 g B) 144 g C) 40.0 g D) 150 g

(8.4) (10 pt) A child weighs 75 lb. The dose of drug C is specified as 25 mg/kg/24 hr in three doses. The drug is administered as an injection of a 50.0 mg drug C/mL solution. How many mL of drug should be administered in each dose. (2.2 lb = 1 kg)

(7.6) Use the answers on the right for Questions 18-23

		AC) diffusion
18. In the "naked egg" experiment the tap water was	A) into	
to the egg.		AD) crenate
	B) out of	
19. A red blood cell in 0.9% NaCl will		AE) swell
	C) hypotonic	
20. As the blood of a patient undergoing hemodialysis leaves		BC) neither crenate or swell
the patient, its solute concentration is	D) hypertonic	
to the dialyzing solution.		BD) higher
	E) isotonic	
21. As the blood of a patient undergoing hemodialysis re-		BE) lower
enters the patient, its osmotic pressure is	AB) osmosis	
than the dialyzing solution.		CD) the same as
22. The word for water movement across a semipermeable		
membrane is		
23. In the naked egg experiment the water moved the		
egg that was in the Karo syrup.		

SCRATCH

USEFUL CONVERSION FACTORS AND RELATIONSHIPS

Length SI unit: meter (m) 1 km = 0.62137 mi 1 mi = 5280 ft = 1.6093 km 1 m = 1.0936 yd 1 in. = 2.54 cm (exactly) 1 cm = 0.39370 in. 1 Å = 10⁻¹⁰ m Mass SI unit: kilogram(kg) 1 kg = 2.2046 lb 1 lb = 453.59 g = 16 cz 1 amu = 1.6605402 x 10⁻²⁴ g Temperature

SI unit: Kelvin (K) $0 \text{ K} = -273.15^{\circ}\text{C}$ $= -459.67^{\circ}\text{F}$ $\text{K} = ^{\circ}\text{C} + 273.15$ $^{\circ}\text{C} = \frac{5}{9} (^{\circ}\text{F} - 32^{\circ})$ $^{\circ}\text{F} = \frac{9}{5} ^{\circ}\text{C} + 32^{\circ}$ Energy (derived) SI unit: |cule(|)|1 J = 1 kg-m²/s² 1 J = 0.2390 cal = 1 C x 1 V 1 cal = 4.184 J 1 eV = 1.602 × 10⁻¹⁹ J Pressure (derived)

SI unit: Pascal (Pa) 1 Pa = 1 N/m² = 1 kg/m-s² 1 atm = 101,325 Pa = 760 torr = 14,70 lb/in²

1 bar = 10⁵ Pa Volume (derived)

St unit: cubic mater (m^3) 1 L = 10⁻³ m³ = 1 dm³ = 10³ cm³ = 1.0567 qt 1 gal = 4 qt = 3.7854 L 1 cm³ = 1 mL 1 in³ = 16.4 cm³

SCRATCH

PERIODIC CHART OF THE ELEMENTS

Electronegativity Chart of the Elements

1A (A 8A

1																
18	-															
н	2A 🗸	(C	urrent	Americ	an Usa	ge			\rightarrow 3A	4 A	5A	6 A	
2.1	2	(<u> </u>			IU	PAC No	otation-		<u> </u>	<u> </u>	→ 13	14	15	16	
Li	Be	1										В	С	N	0	╈
1.0	1.5											2.0	2.5	3.0	3.5	
Na	Mg	3B	4B	5 B	6 B	7B	←	—8 B —	>	1B	2 B	Al	Si	Р	S	t
0.9	1.2	3	4	5	6	7	8	9	10	11	12	1.5	1.8	2.1	2.5	
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	Ās	Se	t
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Āg	Cd	In	Sn	Sb	Те	t
0.8	1.0	1.3	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	
Cs	Ba	La *	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	Ti	Pb	Bi	Po	t
0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	
Fr	Ra	Ac †	Rf	Db	Sg	Bh	Hs	Mt	‡	‡	‡	* Lan	l thanide	l e Series	l	
0.7	0.9	1.1										† Acti	nide Se	ries		

‡ IUAPC has not yet named

these elements.

Ce	Pr	Nd	Pm	Sm	Eu	Gd	ть	Dy	Но	Er	Tm	Yb	Lu
1.1	1.1	1.2		1.2		1.1	1.2		1.2	1.2	1.2	1.1	1.2
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw
1.3	1.5	1.7	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3