Use your Scantron to answer questions 1-33. Each answer is worth 2 pt. There is only one answer per question unless it states otherwise.

it states otherwise.												
Chp 5 (Chemical Reactions, Equations and Stoichiometry 1. Indicate the missing words in the following statement: "For an ordinary chemical reaction the mass of the reactants."	he mass of the products is											
A) usually more than B) always less than C) usually less than D) always	equal to											
 2. Which of the following elements is represented by a diatomic molecule in a chemical equation? A) beryllium B) boron C) chlorine D) krypton E) phosphorous Use the answers on the right to answer Questions 3-7 												
3. In chemical equations the appear on the left side of the equation.	A) Created											
4. Chemical equations represent a process in which one or more pure substances isother pure substances.	B) Coefficients C) Converted into D) Reactant(s)											
5. Chemical equations are balanced by adding to the equations.	E) Product(s) AB) Chemical bond											
6. In chemical reactions atoms are neithernor destroyed they only change partners.	AD) Coefficients AE) (g)											
7. When the product of a reaction is a precipitate the subscript is used in the formula.	BC) (l) CD) (s)											
Complete and balance this double replacement reaction. (6 pt)Mg(HCO_3)_{2(aq)} +HI_{(aq)} \rightarrow												
Answers for Questions #8-10												
A) Double displacement B) Single displacement C) Combination reaction D) Decomposition reaction	action E) Combustion											
8. Type (3 pt) <i>Balance:</i> HgO _(s) \rightarrow Hg +O ₂												
9. Type (4 pt) <i>Balance:</i> $Cu_{(s)} +$ $AgNO_{3(aq)} \rightarrow$ $Ag_{(s)} +$	$_{\text{Cu(NO}_3)_{2(aq)}}$											
10. Type (5 pt) Write & balance: Nitrogen gas and hydrogen gas react together to m	nake ammonia gas.											

(7 pt) Write the balanced equation for the combustion of acetylene (C_2H_2).

11. Which of the following is considered a greenhouse gas? A) H ₂ B) N ₂ C) O ₂ D) CO ₂ E) H ₂ O
12. What is the molar mass of the compound, aluminum chloride? A) 26.98 amu B) 26.98 g C) 62.43 g D) 133.33 amu E) 133.33 g
13. For the reaction $2H_2 + O_2 \rightarrow 2H_2O$ how many <u>moles</u> of water is produced from 2.5 moles of hydrogen? a. 2.5 moles b. 2.0 moles c. 18.0 grams d. 2.5 grams
14. How many moles of CO ₂ are produced from 79.8 g of Fe ₂ O ₃ according to the following balanced equation? Fe ₂ O ₃ + 3CO → 2Fe + 3CO ₂ Molar masses: Fe ₂ O ₃ = 159.70 g; CO = 28.01 g; Fe = 55.85 g; CO ₂ = 44.01 g
A) 2.56 mol CO ₂ B) 1.36 mole CO ₂ C) 1.50 mole CO ₂ D) 1.14 mole CO ₂ E) 1.62 mol CO ₂
(8 pt) How many grams of AlCl ₃ can be made from 55 kg Al according to the following balanced equation: $2Al_{(s)} + 3O_{2(g)} \rightarrow 2Al_2O_{3(s)} $ Molar masses: Al = 26.98 g; $O_2 = 32.00$ g; $Al_2O_3 = 101.96$ g
Chp 6 (Acids, Bases, Salts)
15. What kind of taste do acids have? A) sweet B) sour C) fruity D) slippery E) salty
Use these answers for questions 16-18: A) acid(s) B) base(s) C) neutral D) acidic E) basic
16are compounds that donate a H ⁺ in water.
17. Ammonia is a weakerthan sodium hydroxide
18. HCl is thefound in our stomachs.
Use these answers for Questions 19-20. Mark two answers on your scantron for each question. A) strong B) weak C) acid D) base
19. NaOH is a
20. H ₂ CO ₃ is a

Answers for Ouestions 21 and 22.

- A) $H_3PO_{4(aq)} + NaOH_{(aq)} \rightarrow Na_3PO_{4(aq)} + H_2O_{(aq)}$
- B) $Co(NO_3)_{2(aq)} + 2NaCl_{(aq)} \rightarrow 2NaNO_{3(aq)} + CoCl_{2(aq)}$
- C) $H_2SO_{4(aq)} + Zn_{(s)} \rightarrow ZnSO_{4(aq)} + H_{2(g)}$
- D) $H_2SO_{4(aq)} + BaCl_{2(aq)} \rightarrow BaSO_{4(aq)} + 2HCl_{(aq)}$
- 21. Which of the reactions is an acid base neutralization reaction?
- 22. Which of the reactions produces an acid?

Use these answers	for a	guestions	23-27
-------------------	-------	-----------	-------

- A) aqueous
- B) electrolyte
- C) neutral
- D) acidic
- E) basic

- 23. In _____ solutions the pH is equal to 7.
- 24. A solution of pH 8 is more _____than a solution of pH 5.
- 25. In _____ solutions the pH is less than 7
- 26. In _____ solutions $[OH^-]$ is less than $[H_3O^+]$.
- 27. A solution that contains $[H_3O^+] = 1.2 \times 10^{-8}$ is _

Use the following equations for Questions 28 and 29.

 $pH = -log[H_3O^+]$ and $[H_3O^+] = 10^{-pH}$

- 28. What is the pH of a solution that has a $[H_3O^+] = 1.2 \times 10^{-3}$?
 - A) 1.20
- B) 2.92
- C) 11.08
- D) 12.80
- 29. What is the $[H_3O^+]$ concentration in a solution that has a pH = 2.34?
 - A) 2.3×10^{-3} M
- B) 4.6×10^{-3} M
- C) 2.2×10^{-12} M
- D) 1.2×10^{1} M

For Questions 30 - 32 consider the following reactions for HCO₃-

i)
$$HCO_3^- + H_2O \rightarrow CO_3^{2-} + H_3O^+$$

ii)
$$HCO_3^-$$
 + $HCI \rightarrow H_2CO_3 + CI^-$

- 30. In equation i), HCO₃⁻ is a(an)
- A) Acid
- B) Base
- C) both
- D) neither

- 31. In equation ii), HCO₃ is a(an)
- A) Acid
- B) Base
- C) both
- D) neither

- 32. Substances like HCO₃ are known as A) amphiphatic
- B) amphoteric
- C) esoteric
- D) hyperbaric

- 33. Buffers are substances that are A) solids
- B) liquids
- C) aqueous
- D) resist pH changes in aqueous solutions.

CHEM 5, Spring 2016 EXAM 3 (Continued) Page 4 of 4

(22 pt) Fill in the correct name or the correct formula for the compounds listed in the following table.

COMPOUND	ION	ION	COMPOUND NAME
FORMULA	FORMULA	FORMULA	
Ca(NO ₃) ₂			
	K ⁺	ClO ₃ -	
	Sn ²⁺	CO ₃ ²⁻	
KMnO ₄			
FeSO ₃			
			ammonium sulfate
			carbon dioxide
			Phosphoric acid
	H ⁺	ClO	

22 pt

PERIODIC CHART OF THE ELEMENTS

1 H 1.00797																1 H 1.00797	2 He
3 Li 6.939	Be 9.0122											5 B 10.811	6 12.0112	7 N 14.0067	8 15.9994	9 F 18.9984	10 Ne 20.183
11 Na 22.9898	12 Mg 24.312										'	13 Al 26.9815	\$i 28.086	15 P 30.9738	16 S 32.064	17 CI 35.453	18 Ar 39.948
19 K 39.102	Ca 40.08	21 Sc 44.956	Ti 47.90	V 50.942	24 Cr 51.996	25 Mn 54.9380	Fe 55.847	Co 58.9332	28 Ni 58.71	Cu 63.54	Zn 65.37	31 Ga 69.72	32 Ge	33 As 74.9216	34 Se 78.96	35 Br 79.909	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.905	40 Zr 91.22	41 Nb 92,906	42 Mo 95.94	Tc	44 Ru 101.07	45 Rh 102.905	Pd 106.4	47 Ag 107.870	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	Te 127.60	53 	54 Xe
55 Cs 132.905	56 Ba 137.34	*57 La 138.91	72 Hf 178.49	Ta 180.948	74 W 183.85	75 Re 186.2	76 Os	77 r 192.2	78 Pt 195.09	79 Au 196.967	80 Hg 200.59	81 T1 204.37	Pb 207.19	83 Bi 208.980	Po (210)	85 At	86 Rn
87 Fr	88 Ra	†89 Ac	104 Rf (261)	105 Db	106 Sg	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 ? (271)	111 ? (272)	112 ?						

Numbers in parenthesis are mass numbers of most stable or most common isotope.

Atomic weights corrected to conform to the 1963 values of the Commission on Atomic Weights.

The group designations used here are the former Chemical Abstract Service numbers.

*Lanthanide Series | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66

58	59	60	61	62	63	64	65	66	67	68	69	70	71	ı
\sim	Dr	NIA.	D_{m}	Cm.		CA	Th	Dv	ᆸᇫ	Cr.	Τm	Vh.	1	ı
CE	Г	NU												ı
140.12	140.907	144.24	(147)	150.35	151.96	157.25	158.924	162.50	164.930	167.26	168.934	173.04	174.97	ı

† Actinide Series

90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Nσ	Pu	Αm	Cm	Bk	Cf	Es	Fm	Md	No	Lr
					(243)						(256)	(256)	(257)

SCRATCH PAPER