\qquad

Use the Scantron for Questions 1-25. Mark only one answer unless instructed otherwise.
CHP 3.1-3.4 (Atomic structure and isotopes)
ANSWERS FOR QUESTIONS 1 and 2:
A) protons
B) neutrons
C) electrons
D) nucleus
E) atomic number
$A B)$ mass

1. What does the nucleus of an atom contain? Mark more than one answer.
2. Atoms are neutral because the number of \qquad equal the number of \qquad ? Mark two answers.
$(14 \mathrm{pt})$ Fill in this table with the missing values, isotope formulas or names.

Isotope name	Isotope symbol	Atomic number	Mass number	Protons	Neutrons	Electrons	Charge	(C)ation (A)nion (N)eutral
	${ }^{15}{ }_{7} \mathrm{~N}^{-3}$							
			27	13			0	

CHP 3.5-3.10 (Periodic Table)

Mark the letters of the chemical symbol on your scantron that correspond to each of the following names. There are more symbols than names.

ELEMENT NAME
3. Manganese
4. Copper
5. Calcium
6. Nickel
7. Beryllium

ELEMENT SYMBOLS					
A.	B	AC. $\quad \mathrm{Ca}$	CD.	Nk	
B.	Ba	AD. $\quad \mathrm{Cd}$	CE. $\quad \mathrm{M}$		
C.	Be	AE. $\quad \mathrm{Co}$	ABC. $\quad \mathrm{Ma}$		
D.	Bm	BC. $\quad \mathrm{Cu}$	ABD. $\quad \mathrm{Me}$		
E.	Br	BD.	N	ABE.	Mg
AB.	C	BE.	Ni	ACD.	Mn

(11 pt) Complete the following table.

Name	Symbol	Metal (M) Nonmetal (N) Metalloid (D)	Representative (R) or Transition (T) Element	Period Number	Group Number
Zinc					2B
	F			2	
		D		3	4 A

8. Which elements have similar properties according to periodic law and the table? Mark more than one answer.
A) Manganese
B) Copper
C) Calcium
D) Nickel
E) Beryllium

39 pt
9. The alkaline earth metals are in which group of the periodic table?
a) IA
b) IIA
c) VIA
d) VIIA
e) VIIIA

ANSWERS FOR QUESTIONS 11 and 12:
A) Hydrogen
B) Helium
C) Oxygen
D) Nitrogen
E) Carbon
AB) Silicon
AC) Aluminum

10 . What is the most common element in the human body?
11. What is the most common element the air that we breathe?

BONUS (2 pt) Someone who likes to start fires is an \qquad NAME THE ELEMENT
CHP 3.11-3.17 (Electron configurations)
12. Which of the following statements is/are correct?
i. Principal energy levels are identified by the letters s, p, d, and f
ii. Principal energy levels appear in both the quantum mechanical model of the atom and the Bohr model of the atom
iii. In general, $n=1$ is at lower energy than $n=2$, and $n=2$ is lower than $n=3$, and so on
iv. The principal energy level is related to electron spin
A. i only
B. iv only
C. i and ii
D. ii and iii
E. iii and iv
13. What is the electron configuration for Br
A. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 4 \mathrm{p}^{5}$
B. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6}$
C. $[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{5}$
D. $[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6}$
14. Mark your scantron for the following elements or ions that have this electron configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
A) Ne
B) Na^{+}
C) K^{+}
D) S
E) P^{3-}
15. How many total electrons can fit into principal energy level 3 ?
A) 2
B) 8
C) 18
D) 32
16. In the third principal energy level, what is the order of energies of the sublevels, from lowest to highest?
A) $1 s<2 s<3 s$
B) $3 d<3 p<3 s$
C) $3 p<3 s<3 d$
D) $3 p<3 d<3 s$
E) $3 s<3 p<3 d$
17. Which of the following pairs of atomic numbers belong to elements whose atoms have the highest occupied energy level electron configuration of the form $n s^{2}, n p^{4}$?
A) 16 and 52
B) 40 and 72
C) 24 and 42
D) 9 and 17
E) 14 and 32
(9 pts) Draw the orbital energy diagram for the ground state electron configuration of silicon. The orbital energy diagram for the ground state electron configuration of lithium is given as an example.
EXAMPLE: Li (atomic number: $3=3$ electrons) electron configuration: $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{1}$

CHP 4 (Chemical bonding, chemical naming and chemical formula calculations)
18. Which of the following is true regarding an ion? (circle all that are correct)
A) all ions have noble gas electron configuration
B) an ion is an atom that has gained or lost electrons
C) an ion is an atom that carries either a positive or negative charge
D) salts are made up of ions
(16 pt) Fill in the table with the missing names or symbols

Name of compound or ion	Formula
	$\mathbf{H C l}$
aluminum chloride	$\mathbf{B r O}_{2}$
magnesium hydride	
iron (III) oxide	$\mathbf{C u}^{2+}$
Dinitrogen tetroxide	

19. Which of the following is the best classification for a bond in which bonding electrons are shared equally?
A. Nonpolar
B. Polar covalent
C. Primarily ionic
D. Very strongly polar covalent
E. Slightly ionic
20. Which of the following chemical bonds is best described as nonpolar covalent?
A) $\mathrm{H}-\mathrm{H}$
B) $\mathrm{H}-\mathrm{C}$
C) $\mathrm{H}-\mathrm{N}$
D) $\mathrm{H}-\mathrm{O}$
E) H-F
21. The ratio of anions to cations in an ionic compound is always such that...
A. the compound is reduced in size when compared to the parent atoms
B. there are as many anions as there are cations
C. the anions outnumber the cations
D. the cations outnumber the anions
E. the compound is electrically neutral

Draw the Lewis structure for SO_{2} and fill in the blanks in the table (18 pt total)

Lewis structure (6 pt)	Valence Electrons (2 pt)	
	Electron group geometry (2 pt)	
	Bond Angle (2 pt)	
	Molecular geometry (2 pt)	
(2 pt) How many resonance structures are there?	Polar (P) or Non$\operatorname{polar}(\mathrm{N})(2 \mathrm{pt})$	

(12 pt) One of the pollutants from automobiles know as NOX was found to contain 17.3 g oxygen and 7.43 g nitrogen. What is the empirical formula for this compound. Show all work for complete credit.

	Oxygen	Nitrogen
Grams		
Molar mass		
Moles		
Mole ratio		
Whole number mole ratio		

THE EMPIRICAL FORMULA IS

| TOTAL |
| :---: | :---: | :---: | :---: |
| ELECTRON |
| GROUPS |
| Electron Group |
| Geometry) |
| linear |
| Bond angle: 180° |

BONDING ELECTRON GROUPS
(Molecular Geometry)

PERIODIC CHART OF THE ELEMENTS

* Lanthanide Series

$\stackrel{58}{\text { Ce }}$ 140.12	$\stackrel{59}{\mathrm{Pr}_{140}}$	$\stackrel{60}{\mathrm{~N}} \mathrm{~d}$		S^{62}	$\stackrel{63}{E^{4}}$	$G^{64} d$	T^{65} 158.924	${ }^{66} y$		${ }^{68}$	$\operatorname{T}_{168}^{69}$	$\stackrel{70}{Y b}$	$\begin{gathered} 71 \\ L u \end{gathered}$

Electronegativity Chart of the Elements

$\begin{array}{r} \mathrm{H} \\ 2.1 \end{array}$																	H 2.1	He
Li	Be												B	C	N	0	F	Ne
1.0	1.5												2.0		3.0	3.5	4.0	--
Na	Mg												Al	S	P	S	Cl	Ar
0.9	1.2					-							1.5		2.1	2.5	3.0	--
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co			Cu	Zn	Ga		As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8			1.9	1.6	1.6		2.0	2.4	2.8	-
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh			Ag	Cd	In		Sb	Te	I	Xe
0.8	1.0	1.3	1.4	1.6	1.8	1.9	2.2	2.2			1.9	1.7	1.7		1.9	2.1	2.5	--
Cs	Ba	La*	Hff	Ta	W	Re	Os	Ir			Au	Hg	Ti		Bi	Po	At	Rn
0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.2	2.2			2.4	1.9	1.8		1.9	2.0	2.2	-
$\begin{aligned} & \mathrm{Fr} \\ & 0.7 \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & 0.9 \end{aligned}$	$\begin{gathered} \mathrm{Act} \\ 1.1 \end{gathered}$	Rf	Db	Sg	Bh	Hs	Mt	士		\ddagger	\ddagger	* Lanthanide Series \dagger Actinide Series					

