Elementary Algebra


Sets and Set Notation
Set – a collection of objects

We usually describe a set by listing or describing its elements inside braces.
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 each object is called an element (or member) of the set.
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To indicate that an object is not a member of a set we put a slash through the “is an element” symbol  
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When we list all the elements of a set inside the braces we call it roster notation.
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I have a class roster which contains all the names of the people who are members of this class set.
We can also use set builder notation.
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is a vowel
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  where 
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 is a variable representing any member of the set.
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This is read:         the set of        all 
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       such that       
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is a vowel
We usually use capital letters to denote a set.
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Above
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, because both sets contain the same elements (members).


There are two special sets that need to be considered. The first is the set that contains every element under consideration. It is called the universal set and is often denoted by 
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.  (We decide what we want the universal set to be given the particular problem) The other is the set with no elements; it is called the empty set or null set and is denoted  
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From above the universal set could be 
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 is a letter of the alphabet
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One of the most important relationships between sets is the concept of a subset of a set.

The symbol 
[image: image32.wmf]AB

Í

 is read “
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 is a subset of 
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 is also an element of 
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Also notice that here,  
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  is read  “
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 is a proper subset of 
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 is a subset of C, but is not equal to C. That is, A has fewer elements in it than C.



Ex
If  
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, then all the sets being considered will have elements from this set. That is, they will be subsets of this universal set.

Examples of some sets in this universe are:
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The empty set is a subset of every other set
Notice that
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 since all the elements in A, B, and C are contained in U . Since they are not equal to U, we can also write;
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Also, 
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, because all the elements of A are in B. However,
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Is C a subset of B?  Why or why not?

Do not confuse the notion of “element” and “subset”.  That is, 
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, but the number 2 is not a subset of C. (
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)  The set whose only element is 2, written 
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, is a subset of C. (
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Given a set 
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, we can list all the possible subsets of 
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Notice, the empty set and the set itself are always subsets.

The number of elements in a set is called the cardinality of the set.  The cardinality of the empty set is 0 since it contains no elements. If a set is represented by 
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, then its cardinality is represented by 
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Notice that the number of subsets of C above is 8. We can determine the total number of subsets of any set by taking 2 to the power of the cardinality of the set (Number of elements in the set. Above 
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[image: image76.wmf]3

28

=

, which is what we got.

If two different sets have the same cardinality they are said to have a one-to-one correspondence between them. That is, we can “match up” the elements of one set with those elements of the other, one by one.
We can illustrate the relationships among sets by using pictures known as Venn Diagrams.

The universal set is frequently represented by a rectangle with subsets in that universe represented by circles (or ovals).

It is easy to see relationships among sets with Venn Diagrams.
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When 
[image: image79.wmf]A

 and 
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have elements in common, then they are said to overlap or intersect. If they have no elements in common, they are said to be disjoint.
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Intersecting Sets



Disjoint Sets

Often we are given two sets 
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 and 
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, and we don’t know how or if they are related. In this case we draw the general figure.





This diagram is divided into 4 distinct regions.




There are operations we can perform on sets
If we are given  
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union - all elements in both sets listed once.
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intersection– elements where the sets overlap (the elements that the sets have in common)


We can represent these operations using Venn Diagrams.
When we illustrate the union of two sets A and B, first shade A, and then shade B. The union is all parts that have been shaded.
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To illustrate the intersection of two sets A and B, first shade A in one direction or color, then shade B in another direction or color. The intersection is the set that has been shaded twice that have been shaded.
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If 
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have no elements in common then 
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  “the empty set”
Complementation
The complement of a set A consists of all elements in U which are not in A, denoted 
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         The set 
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  The complement of 
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Let’s look at our previous example from page 2
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For the sets A, B and C and universe U, we have:
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Much of this material taken from “The Language of Sets and Stet Notation” by Dr. Dorothy Hawkes
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We must remember when we make this general diagram that there are many possibilities. 





One or both might be the empty set. 


The sets may be disjoint – in which case region 4 would be empty.


If � EMBED Equation.DSMT4  ���, then region 3 is empty.


If � EMBED Equation.DSMT4  ���, then region 2 is empty.


If � EMBED Equation.DSMT4  ���, then regions 2 and 3 are both empty.
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